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Abstract
End-to-end (E2E) automatic speech recognition (ASR)

can be classified into several models, including connectionist
temporal classification (CTC), recurrent neural network trans-
ducer (RNN-T), attention mechanism, and mask-predict mod-
els. There are pros and cons to each of these architectures,
and thus practitioners may switch between these different mod-
els depending on application requirements. Instead of building
separate models, we propose a joint modeling scheme where
four different decoders (CTC, attention, RNN-T, mask-predict)
share an encoder – we refer to this as 4D modeling. Addition-
ally, we propose to 1) train 4D models using a two-stage strat-
egy which stabilizes multitask learning and 2) decode 4D mod-
els using a novel time-synchronous one-pass beam search. We
demonstrate that jointly trained 4D models improve the perfor-
mances of each individual decoder. Further, we show that our
joint CTC/RNN-T/attention decoding surpasses the previously
proposed CTC/attention decoding.
Index Terms: speech recognition, CTC, attention, RNN-T,
non-autoregressive

1. Introduction
End-to-end (E2E) automatic speech recognition (ASR) has been
actively studied. E2E ASR systems include four main net-
work architectures, such as connectionist temporal classifica-
tion (CTC) [1–3], recurrent neural network transducer (RNN-
T) [4–8], attention mechanism [9–12], and non-autoregressive
(NAR) methods [13–15]. These networks align speech sig-
nals and token sequences in various ways, each with its own
strengths and weaknesses, as follows:
• CTC assumes conditional independence and predicts mono-

tonic alignment of output tokens with input frames. It is fast
and suitable for real-time applications, but its performance
may suffer from the conditional independence assumption.
CTC can also be used to segment long recordings [16].

• RNN-T also has a monotonic alignment assumption, but un-
like CTC, it relaxes the conditional independence assump-
tion. It generally outperforms CTC and is suitable for stream-
ing ASR [7]. However, the modeling space is larger than that
of the CTC, making it more difficult to train.

• The attention model includes a source-target attention mech-
anism that aligns speech signals with token sequences. This
mechanism is extremely useful in tasks requiring flexible
alignments between input and output sequences (e.g., trans-
lation tasks) [17,18]. However, it is prone to alignment errors
in ASR tasks because it lacks the monotonicity constraint.

• A typical example of NAR models is Mask-CTC [13]. Mask-
CTC estimates the token sequence using the entire sequence.

Figure 1: 4D joint model of CTC, attention, RNN-T, and Mask-
CTC: the four decoders share a universal encoder and joint de-
coding is performed using CTC, attention, and RNN-T.

The mask-based approach [19] can consider label depen-
dency and still retain fast latency. It can be also used for two-
pass rescoring approaches as ASR error correction [20, 21].

Since each network architecture has the above different
properties, separate models for each application scenario are
usually required. CTC, for example, is appropriate for on-
device systems requiring less computation, whereas attention
is suitable for offline systems with less stringent latency re-
quirements. However, having multiple models for each applica-
tion scenario increases overheads. Several attempts have been
made to integrate these models, such as CTC/attention, to re-
duce their respective shortcomings [22–24]. Multitask learn-
ing is performed by sharing an encoder to regularize the over-
flexibility of the attention mechanism and the conditional in-
dependence assumption of the CTC model. A one-pass beam
search is performed during decoding using both CTC and atten-
tion decoders to further improve performance [25]. Other inte-
grated models based on two-pass decoding of RNN-T/attention,
NAR/attention, and NAR/RNN-T models have also been pro-
posed [21,26–29]. Given the success of these joint models with
two types of decoders, a natural question is how many decoders
can be successfully integrated in a single model?

In this work, we seek to jointly model four decoders (4D)
with a shared encoder (Figure 1): CTC, attention, RNN-T, and
Mask-CTC. To accommodate the increased modeling complex-
ity under this 4D scheme, we adapt both our training and de-
coding strategies. In particular, we:
• Employ a two-stage optimization strategy to select multitask-

ing hyper-parameters in an efficient, data-driven manner.
• Demonstrate experimentally that each single-decoder branch

of 4D models are improved over counterparts without joint
training across three benchmark ASR tasks.

• Further introduce novel time-synchronous beam search algo-
rithms for joint CTC/RNN-T/attention decoding, which out-
performs CTC/attention decoding on average.
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2. Preliminary
This section describes our Conformer-based encoder, which is
commonly used in the four models, CTC, attention, RNN-T,
and Mask-CTC. Then, we describe each decoder in detail.

2.1. Universal encoder

Conformer [12, 30] is used as a universal encoder in our study,
which consists of two convolutional layers, a linear projection
layer, and a positional encoding layer, followed by Conformer
blocks. The convolutional layers subsample an audio feature
sequence, X , into a subsampled feature sequence. Then, the
Conformer blocks transform the subsampled feature sequence
to a T -length hidden state sequence, H = [h1, ...,hT ], de-
scribed as,

H = ConEncoder(X). (1)

2.2. CTC

The CTC decoder estimates the output token sequence, y, given
H generated by the encoder in Eq. (1). CTC introduces the
alignment sequence z = {zt ∈ V ∪ {ϕ}}, where t, V , and
ϕ denote the time index, the vocabulary, and a blank token, re-
spectively. CTC estimates the alignment posteriors, P(z|X).
Each alignment sequence, z, is deterministically mapped to
a corresponding S-length output sequence, y = [y1, ..., yS ].
CTC assumes conditional independence, yielding:

Pctc(y | X) =
∑

z∈Z(y)

P(z | X) =
∑

z∈Z(y)

[
T∏

t=1

P (zt | ht)

]
.

(2)
During training, CTC optimizes model parameters by minimiz-
ing the following negative log-likelihood as follows:

Lctc = − logPctc(y | X), (3)

where Z(y) is a set of all possible alignment sequences of y.

2.3. RNN-T

The RNN-T decoder comprises a prediction network and a joint
network. The prediction network generates a high-level rep-
resentation gs by conditioning on the previous non-blank to-
ken sequence gs−1, where s denotes a non-blank token index.
The joint network is a feed-forward network that combines ht

and gs. While CTC assumes the conditional independence in
Eq. (2), the RNN-T model marginalizes the potential alignments
u that output y as follows:

Prnnt(y | X) =
∑

z∈Z(y)

P (z|X) =
∑

z∈Z(y)

[
T+S∏

i=1

P (zi | hti , gsi)

]
,

(4)
where i represents a position in (T + S)-length alignment path
specified by ti-th decoder state and si-th token, respectively.
RNN-T optimizes model parameters by minimizing the follow-
ing negative log-likelihood described as,

Lrnnt = − logPrnnt(y | X). (5)

2.4. Attention

Given H generated by the encoder in Eq. (1) and the previ-
ously estimated token sequence ys−1, the attention decoder re-
cursively estimates the next token ys. The token history ys−1

is converted to token embeddings and fed into decoder layers
with hidden states H , unlike ht in CTC/RNN-T. While CTC
and RNN-T uses ht in Eq. (2) and (4), the likelihood of an
attention model is described as follows:

Patt(y | X) =
S∏

s=1

P (ys | ys−1,H) . (6)

Attention optimizes model parameters by minimizing the fol-
lowing negative log-likelihood described as,

Latt = − logPatt(y | X). (7)

2.5. Mask-CTC

The Mask-CTC model uses a masked language model (MLM)
[19] decoder, which estimates the token sequence using the en-
tire sequence given H in Eq. (1), smilar to the attention case.
However, unlike attention, randomly sampled tokens ymask are
masked with a special token during training. Then, ymask is pre-
dicted conditioning on the remaining unmasked tokens yobs as
Pmlm(ymask|yobs,X). Mask-CTC optimizes model parameters
by minimizing the following negative log-likelihood:

Lmlm = − logPmlm(ymask|yobs,X). (8)

3. Proposed 4D ASR model
This section describes the joint training using the two-stage op-
timization strategy and the joint decoding used in the proposed
4D model as shown in Figure 1.

3.1. Joint training with a two stage strategy

Multitask learning is performed using the weighted sum of
losses shown in Eqs. (3), (5), (7), and (8) described as follows:

L = λctcLctc + λrnntLrnnt + λattLatt + λmlmLmlm, (9)

where λ represents training weights. Training weights are usu-
ally determined experimentally [23] or based on meta-learning
[31]. In this work, with four weights, experimenting with all
possible combinations would be overly time-consuming. To ad-
dress this issue, we used a two-stage optimization strategy to de-
termine the multitask weights (λctc, λrnnt, λatt, λmlm) in Eq. (9).
In the first stage, all four training weights were set to be equal,
i.e., (0.25, 0.25, 0.25, 0.25). Then, in the second stage, the
training weights were determined to be roughly proportional to
the number of epochs in the first stage at which each validation
loss reached its minimum value. For example, if the validation
losses (Lctc, Lrnnt, Latt, Lmlm) takes their minimum values at the
10th, 10th, 10th, and 70th epochs in the first stage, the training
weights in the second stage were set to (0.1, 0.1, 0.1, 0.7). This
strategy is based on the proposition that losses requiring more
epochs to convergence should be given higher weights.

3.2. Time synchronous one-pass joint decoding

Another key contribution of this paper is to propose two one-
pass joint CTC/RNN-T/attention decoding algorithms using
time-synchrony: Algorithms 1 and 2 present CTC-driven and
RNN-T-driven algorithms, respectively. While adding an RNN-
T decoder to label-synchronous one-pass beam search proposed
in [22] would require computing all RNN-T alignment paths,
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the proposed method avoids this inefficient computation by us-
ing time synchrony. Note that we excluded the Mask-CTC from
the proposed joint decoding because, unlike the other three de-
coders, it predicts the entire output sequence in parallel.

The CTC-driven method uses CTC as a primary decoder,
which generates initial hypotheses, ext hyps (lines 3-8 in Algo-
rithm 1); this is similar to CTC-driven joint decoding methods
with attention [32,33] or a language model [34], but additionally
accounts for RNN-T likelihoods. The RNN-T-driven method
uses RNN-T as a primary (lines 4-9 in Algorithm 2); this time-
synchronous method is performed autoregressively, unlike it-
erative CTC refinement of RNN-T [21], plus we additionally
account for attention likelihoods.

Then, the generated hypotheses, ext hyps, are scored com-
bining CTC, attention, and RNN-T decoders (lines 9-18 in Al-
gorithm 1, lines 10-15 in Algorithm 2). The attention score
is calculated using the forward computation as in Eq. (6) for
both joint decoding methods. The CTC score is calculated us-
ing dynamic programming as in [1] for the CTC-driven method,
and CTC prefix scoring proposed in [22] is used for the RNN-
T-driven method. As for RNN-T scoring, the probabilities of
all possible paths from the previous hypotheses at t − 1 to the
current hypothesis at t are added for the CTC-driven method,
whereas the RNN-T score is calculated as in the conventional
RNN-T [4]. Each decoder score α is added with the decoder
weights (µctc, µatt, µrnnt) (line 17 in Algorithm 1, line 14 in Al-
gorithm 2).

Top kbeam hypotheses, hyps, are retained for the next time
frame based on the obtained joint score (line 19 in Algorithm
1, line 16 in Algorithm 2), where kbeam denotes the main beam
size.

Note that, RNN-T-driven joint decoding generates only kpre

hypotheses (line 4 in Algorithm 2), whereas CTC-driven joint
decoding generates kpre × kbeam hypotheses (line 3-8 in Algo-
rithm 1). In other words, CTC-driven joint decoding requires
roughly kbeam times more computation for scoring. Therefore,
we pruned the hypotheses in CTC-driven joint decoding to re-
duce the computational cost. The top kpre hypotheses were cho-
sen specifically based on the CTC and attention scores before
RNN-T scoring (line 14 in Algorithm 1).

4. Experiments
4.1. Experimental setup
The input features were 80-dimensional Mel-scale filter-bank
features with a window size of 512 samples and a hop length of
160 samples. The sampling frequency was 16 kHz. SpecAug-
ment [35] was then used. The encoder consisted of two con-
volutional layers and a 512-dimensional linear projection layer
followed by 12 Conformer layers with 2048 linear units. The
CTC decoder had a 1-layer linear layer. The attention and
MLM decoders had six Transformer layers with 2048 linear
units each. We set the attention dimension size to 512 with 8-
multi-head attention. The RNN-T decoder used a 1-layer long
short-term memory (LSTM) with a 512 hidden size and a linear
layer of 640 joint sizes for the prediction and joint networks, re-
spectively. The proposed model was trained 150 epochs using
the Adam optimizer at a learning rate of 0.0015. The training
weights (λctc, λrnnt, λatt, λmlm) of the second stage were (0.15,
0.10, 0.30, 0.45) based on the two-stage strategy described in
Section 3.1. The decoder weights (µctc, µrnnt, µatt) of CTC-
driven and RNN-T-driven joint decoding in Algorithms 1 and
2 were (0.2, 0.2, 0.6) and (0.1, 0.4, 0.5), respectively.

The proposed method was tested using the LibriSpeech
(960 h, 100 h) [36] and our in-house dataset (855 h). Our in-
house dataset1 consists of 93 hours of Japanese speech data, in-
cluding meeting and morning assembly scenarios, plus the Cor-
pus of Spontaneous Japanese (581 h) [37] and the 181 hours of
Japanese speech database developed by the Advanced Telecom-
munications Research Institute International (ATR-APP) [38].
The word/character error rate (WER/CER) were calculated for
LibriSpeech and our in-house dataset, respectively. We used the
ESPnet [39] toolkit.

4.2. Effect of the joint training
Table 1 presents two forms of results, the effect of the joint
training and decoding. First, we show that the single-decoder
branches of our 4D models outperform their counterparts with-
out joint training (A1-4 vs. B1-4) – 4D joint encoders

1Our in-house dataset is not released for privacy and confidentiality
reasons.
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Table 1: Our 4D models with jointly trained encoders (B1-8) compared to respective baselines (A1-5). Best WER/CER result in each
comparison is bolded and best results overall are further underlined. The average absolute improvements (∆) are also shown.

JOINT LIBRISPEECH 960 H LIBRISPEECH 100 H IN-HOUSE

ID MODEL NAME ENCODER test-clean test-other test-clean test-other assembly meeting avg ∆

A1 Attention (baseline) - 2.88 5.62 8.59 19.43 3.81 5.82 -
B1 4D Attention ✓ 2.66 5.62 7.83 17.91 3.56 5.31 -0.54

A2 CTC (baseline) 3.10 6.90 8.20 20.66 3.91 6.30 -
B2 4D CTC ✓ 2.84 6.39 7.30 18.96 3.74 5.53 -0.72

A3 Mask-CTC (baseline) - 2.97 6.92 8.72 20.78 4.37 6.56 -
B3 4D Mask-CTC ✓ 3.11 6.82 7.47 18.97 3.86 6.24 -0.64

A4 RNN-T (baseline) - 2.66 5.82 7.25 18.30 4.00 5.91 -
B4 4D RNN-T ✓ 2.56 5.74 7.10 17.61 3.94 5.30 -0.28

A5 CTC/Attention (baseline) - 2.45 5.18 7.08 17.80 3.75 5.72 -
B5 4D CTC/Attention ✓ 2.42 5.31 6.49 17.03 3.67 5.17 -0.32

A5 CTC/Attention (baseline) - 2.45 5.18 7.08 17.80 3.75 5.72 -
B6 4D RNN-T/Attention (RNN-T-driven) ✓ 2.37 5.25 6.35 16.47 3.81 5.17 -0.43
B7 4D CTC/RNN-T/Attn (CTC-driven) ✓ 2.42 5.25 6.32 16.48 3.69 5.12 -0.45
B8 4D CTC/RNN-T/Attn (RNN-T-driven) ✓ 2.38 5.21 6.33 16.43 3.65 5.16 -0.47

(a) First stage (b) Second stage
Figure 2: Validation curves of the first vs. second stage.

Table 2: Effect of the two stage strategy with Librispeech 100 h.
Decoder w/o multitasking 1st stage 2nd stage
Attention 19.43 18.69 17.91

CTC 20.66 19.52 18.96
Mask-CTC 20.78 20.38 18.97

RNN-T 18.30 18.10 17.61

improve CTC, attention, RNN-T, and Mask-CTC models by
0.28-0.72 WER/CER overall. This improvement persists for
CTC/attention models as well (A5 vs. B5). The effect of the
joint decoding (B6-8) will be discussed in Section 4.4

4.3. Analysis of the two-stage training strategy
Figure 2 shows the normalized validation losses in the first and
second stages. The MLM loss took more epochs to converge
than the other three decoders in the first training (Figure 2a),
indicating that the trained model did not converge sufficiently
with the MLM decoder, or the other decoders were overfitted.
The difference in the convergence speed of the four losses, on
the other hand, was smaller in the second training, indicating
that the four losses converged relatively adequately (Figure 2b).
Table 2 shows the performance of each decoder on the test-other
set of Librispeech 100 h without and with joint training in the
first/second stage. Even the first stage outperformed the model
without multitask learning, the performance of all four decoders
improved in the second stage. Using the proposed two-stage ap-
proach, the four weights were efficiently determined with only
two experimental trials.

4.4. Effect of the joint decoding
Table 1 also presents the results of joint decoding (A5
and B6-8). We show that 4D models also offer RNN-
T/attention and CTC/RNN-T/attention decoding, which out-

Figure 3: Relationship between RTFs and WERs. The red, blue,
and green dots denote the baselines, 4D model without joint
decoding, and 4D model with joint decoding, respectively.

perform CTC/attention on average (A5 vs. B6-8) – RNN-T-
driven CTC/RNN-T/attention decoding is 0.47 WER/CER bet-
ter than CTC/attention overall. Note that these improvements
are more pronounced on Librispeech 100 h, suggesting that the
4D method offers a regularization effect which is important for
smaller amounts of training data.

Figure 3 shows the relationship between real-time factor
(RTF) using a GPU (NVIDIA RTX3090) and WER on the Lib-
rispeech 100 h test-other set. The red dots denote the base-
lines, the blue dots denote 4D joint training but without joint
decoding, and the green dots denote 4D joint training with joint
decoding. Comparing the red and blue dots, the proposed 4D
model reduced WER for all decoders without increasing RTF
as long as a single decoder is used. The proposed two joint de-
coding methods had larger RTFs than the other decoders due to
increased complexity, but the WERs were the smallest. CTC-
driven joint decoding had a larger RTF than RNN-T joint de-
coding, even with the pruning as described in Section 3.2.

5. Conclusion
This paper proposed a 4D joint model of CTC, attention, RNN-
T, and Mask-CTC by sharing an encoder trained in a multi-
task fashion. We demonstrated that jointly trained 4D mod-
els with the proposed two-stage training strategy improved
the performance of each individual decoder. Furthermore,
the proposed joint CTC/RNN-T/attention decoding improved
the performance and outperformed the previously proposed
CTC/attention decoding.
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“Non-autoregressive transformer for speech recognition,” IEEE
Signal Process. Lett., vol. 28, pp. 121–125, 2020.

[15] X. Song, Z. Wu, Y. Huang, C. Weng, D. Su, and H. Meng, “Non-
autoregressive transformer asr with ctc-enhanced decoder input,”
in Proc. ICASSP, 2021, pp. 5894–5898.

[16] L. Kürzinger, D. Winkelbauer, L. Li, T. Watzel, and G. Rigoll,
“Ctc-segmentation of large corpora for german end-to-end
speech recognition,” in Speech and Computer, A. Karpov and
R. Potapova, Eds. Cham: Springer International Publishing,
2020, pp. 267–278.

[17] M. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” in Proc. EMNLP,
2015, pp. 1412–1421.

[18] M. Sperber, G. Neubig, J. Niehues, and A. Waibel, “Attention-
passing models for robust and data-efficient end-to-end speech
translation,” Transactions of the Association for Computational
Linguistics, vol. 7, pp. 313–325, 2019.

[19] M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Mask-
predict: Parallel decoding of conditional masked language mod-
els,” in Proc. EMNLP-IJCNLP, 2019.

[20] H. Futami, H. Inaguma, S. Ueno, M. Mimura, S. Sakai, and
T. Kawahara, “Non-autoregressive error correction for ctc-based
asr with phone-conditioned masked lm,” in Proc. Interspeech,
2022, pp. 3889–3893.

[21] W. Wang, K. Hu, and T. N. Sainath, “Deliberation of stream-
ing rnn-transducer by non-autoregressive decoding,” in Proc.
ICASSP, 2022, pp. 7452–7456.

[22] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hy-
brid ctc/attention architecture for end-to-end speech recognition,”
IEEE Journal of Selected Topics in Signal Processing, vol. 11,
no. 8, pp. 1240–1253, 2017.

[23] S. Kim, T. Hori, and S. Watanabe, “Joint ctc-attention based end-
to-end speech recognition using multi-task learning,” in Proc.
ICASSP, 2017, pp. 4835–4839.

[24] S. Ueno, H. Inaguma, M. Mimura, and T. Kawahara, “Acoustic-
to-word attention-based model complemented with character-
level ctc-based model,” in Proc. ICASSP, 2018, pp. 5804–5808.

[25] T. Hori, S. Watanabe, and J. R. Hershey, “Joint ctc/attention de-
coding for end-to-end speech recognition,” in Proc. ACL, 2017,
pp. 518–529.

[26] T. N. Sainath, R. Pang, D. Rybach, Y. He, R. Prabhavalkar, W. Li,
M. Visontai, Q. Liang, T. Strohman, Y. Wu et al., “Two-pass end-
to-end speech recognition,” in Proc. Interspeech, 2019, pp. 2713–
2777.

[27] K. Hu, R. Pang, T. N. Sainath, and T. Strohman, “Transformer
based deliberation for two-pass speech recognition,” in Proc. SLT,
2021, pp. 68–74.

[28] Z. Tian, J. Yi, J. Tao, S. Zhang, and Z. Wen, “Hybrid autoregres-
sive and non-autoregressive transformer models for speech recog-
nition,” IEEE Signal Process. Lett., vol. 29, pp. 762–766, 2022.

[29] Z. Yao, D. Wu, X. Wang, B. Zhang, F. Yu, C. Yang, Z. Peng,
X. Chen, L. Xie, and X. Lei, “Wenet: Production oriented stream-
ing and non-streaming end-to-end speech recognition toolkit,” in
Proc. Interspeech, 2021, pp. 4045–4058.

[30] A. Gulati, C. Chiu, J. Qin, J. Yu, N. Parmar, R. Pang,
S. Wang, W. Han, Y. Wu, Y. Zhang, and Z. Zhang, “Conformer:
Convolution-augmented transformer for speech recognition,” in
Proc. Interspeech, 2020, pp. 5036–5040.

[31] X. Lin, H. S. Baweja, G. A. Kantor, and D. Held, “Adaptive auxil-
iary task weighting for reinforcement learning,” in Proc. NeurIPS,
2019.

[32] N. Moritz, T. Hori, and J. Le Roux, “Triggered attention for end-
to-end speech recognition,” in Proc. ICASSP, 2019, pp. 5666–
5670.

[33] B. Yan, S. Dalmia, Y. Higuchi, G. Neubig, F. Metze, A. W. Black,
and S. Watanabe, “Ctc alignments improve autoregressive trans-
lation,” arXiv preprint arXiv:2210.05200, 2022.

[34] A. Y. Hannun, A. L. Maas, D. Jurafsky, and A. Y. Ng, “First-
pass large vocabulary continuous speech recognition using bi-
directional recurrent dnns,” arXiv preprint arXiv:1408.2873,
2014.

[35] D. S. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “SpecAugment: A simple data augmentation
method for automatic speech recognition,” in Proc. Interspeech,
2019, pp. 2613–2617.

[36] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in Proc. ICASSP, 2015, pp. 5206–5210.

[37] K. Maekawa, “Corpus of spontaneous Japanese: Its design and
evaluation,” in ISCA & IEEE Workshop on SSPR, 2003.

[38] A. Kurematsu, K. Takeda, Y. Sagisaka, S. Katagiri, H. Kuwabara,
and K. Shikano, “Atr japanese speech database as a tool of speech
recognition and synthesis,” Speech Communication, vol. 9, no. 4,
pp. 357–363, 1990.

[39] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. Enrique Yalta Soplin, J. Heymann, M. Wiesner, N. Chen,
A. Renduchintala, and T. Ochiai, “ESPnet: End-to-end speech
processing toolkit,” in Proc. Interspeech, 2018, pp. 2207–2211.

3316


