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Abstract
In speaker verification, performance degradation caused by

domain mismatch has been a common problem as the test do-
main lies outside the training distribution. In this paper, we
present a novel domain transfer network called Adversarial
Diffusion Probabilistic Model (ADPM), to better alleviate this
problem. More specifically, ADPM is used to transfer melspec-
trogram from the source domain into the target domain. To
generate the melspectrogram, we propose to regard the diffu-
sion model as the generator and a discriminator is employed for
adversarial training. We also explore the contrastive learning
objective to retain the context information of source domain.
The generated and the original feature maps from the source
domain are fed into the ResNet34 network jointly to construct
cross-domain speaker verification. We evaluate the proposed
techniques on VOiCES dataset, and our best model achieves a
relative 8.94% Equal Error Rate (EER) drop compared to the
previous adaption methods.
Index Terms: speaker verification, cross-domain, diffusion
models, contrastive learning

1. Introduction
Automatic Speaker Verification (ASV) which can verify
whether two utterances are spoken from a same speaker, has
been widely used in daily life [1]. Extracting speaker embed-
dings by deep-learning networks has become the most com-
monly used method in ASV systems. However, the embed-
dings extracted by the speaker extractor depend on large scale
of datasets for training and show poor performance on cross-
domain situations when a domain shift happens between the
source domain for training and target domain for testing. Large
datasets are difficult and expensive to be annotated, and the
speaker embedding network can not fix domain mismatch prob-
lems. Therefore, domain adaptation (DA) is proposed by re-
searchers to solve the problem of domain mismatch between
resource-rich labeled source domain and resource-poor unla-
beled target domain [2].

Probabilistic Linear Discriminant Analysis (PLDA) adapta-
tion for target domain are usually adopted in traditional meth-
ods for ASV domain adaptation tasks [3]. In recent years, deep-
learning approaches, such as CycleGAN [4, 5], are proposed for
DA problems. These models utilize a generative network to fix
the input features, which can better adapt to the output features.
However, CycleGAN requires two Generative Adversarial Net-
works (GAN) [6] which can map from target domain to source
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domain both forward and inversely. Training GANs requires
vast cost of time and computational resources. For the above
reason, researchers are exploring several methods that contains
both adversarial loss and contrastive loss in GANs to obtain a
one-way training for DA tasks, such as Contrastive Learning
for Non-parallel Voice Conversion (CVC) [7] models in Voice
Conversion (VC). In CVC, it only requires a one-way GAN
structure, which reduces the difficulty for training GANs signif-
icantly. By using noise contrastive estimation (NCE) [8], CVC
can preserve content information since it builds correspondence
between source and target spectrograms. In this way, the com-
putational cost is greatly inclined and the performance of gen-
erating spectrograms is also improved.

Furthermore, another family of generative models called
Diffusion Probabilistic Models (DPM) [9] attracts the atten-
tion of academia. Diffusion models show great capability to
model the distribution of input images [10] and the images qual-
ity generated by diffusion model are significantly better than
that of GAN model. In the application of speech, DPM fam-
ily shows significant results in the reconstruction of raw wave-
form [11, 12] and spectrograms [13].

Inspired by recent work, we propose an adversarial DPM
integrating the contrastive learning against the domain shift
speaker verification task called ADPM. First, a diffusion model
is used to reconstruct the spectrograms of the target domain by
using the source domain spectrograms as input. What’s more,
drawing on the idea of adversarial learning, a discriminator is
introduced which can continuously game with the DPM genera-
tor to generate feature maps closer to the target domain. Finally,
to better fit the distribution of target domain data, the NCE-
based patch loss is adopted to achieve better performances for
one-way reconstructions of target spectrograms. The generated
spectrograms with the target domain distributions are trained
together with the original source domain data by a ResNet34
network [14, 15] for speaker verification.

The paper is organized as follows. In Section 1, the back-
ground for cross-domain ASV, and the related work of the gen-
eration models and contrastive learning is briefly reviewed. In
Section 2, the method proposed is described in detail. In Sec-
tion 3, the datasets and experimental settings are stated. In Sec-
tion 4, the experimental results and ablation studies are pre-
sented to prove the effectiveness of our method. Conclusions
and future works are discussed in Section 5.

2. Method
The overall framework of our method proposed is described
in Figure 1. The acoustic features and the generated features
from the ADPM is fed into the speaker verification network to
achieve the speaker-level classification. There are two ways of
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Figure 1: The overall framework for cross-domain speaker ver-
ification.

data usage sent to the neural network, one is the combination
of generated features and source features, and the other is to
replace the original source domain features with the generated
features. The ADPM structure is presented in Figure 2. First,
our DPM is an encoder-decoder network to generate features
out-of domain. Second, the DPM is trained together with a
discriminator to adopt adversarial learning for better fitting the
distribution of the target domain. Third, the contrastive learning
which reserves the content from the source utterances also help
the network gain more effectiveness.

2.1. Diffusion probabilistic model

DPM posses a noise-adding forward process and a denoising
reverse process that owns a powerful feature generation capa-
bility. Inspired by DPM in the filed of image generation, the
DPM is put to use in our task for generating more feature maps
as the front-end data-augmentation for cross-domain ASV.

The process of the DPM is followed by a Stochastic Dif-
ferential Equation (SDE). In score-based [16] diffusion models,
the SDE is writen as:

dXt =
1

2
Σ−1 (µ−Xt)βtdt+

√
βtdWt, t ∈ [0, T ] (1)

where the βt follows a certain noise schedule. µ and Σ are the
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By several forward diffusion processes, X0 can be trans-
formed into random variable Xt with the distribution above.
That is, the SDE equation add noise into the images to achieve
Gaussian noise eventually.

The reverse diffusion process is followed by an ordinary
differential equation:

dXt =
1

2

(
Σ−1 (µ−Xt)−∇ log pt (Xt)

)
βtdl (3)

where the ∇ log pt(Xt) denoted the log-density of the noisy
data. Thus, the aim of the neural network of DPM is to train
a network that can estimate ∇ log pt(Xt). As noisy Xt can be
sampled from X0 by a Gaussian metric, the sampling formula
can be defined as:

Xt = ρ(X0, σ, µ, t) + εt (4)

The log-density of Xt given X0 is calculated as:

∇ log p0t(Xt|X0) = −λ(σ, t)−1εt (5)

where p0t(Xt|X0) follows the distribution of Guassian. For
cross-domain speaker verification task, the input X0 are clean
filterbank features from the target domain. The whole structure
of the DPM owns two components, an encoder GDPM−enc and
a decoder GDPM−dec. The encoder is an attention-based CNN
structure [17] and the decoder is the traditional U-net [18]. The
mean µ and variance Σ is computed by the encoder of DPM by
feeding into the source domain data. The loss of the network
can be computed as:

LDPMt(X0) = Eϵt [||sθ (Xt, t) + λ(Σ, t)−1ϵt||22] (6)

where εt is sampled from N (0, λ(Σ, t)).

2.2. Adversarial learning with DPM for melspectrogram
generation

In tasks of domain adaptation, adversarial learning has a wide
range of applications. For example, the basic theory of GAN [6]
is to train a discrimiator and a generator. In generation pro-
cess, it receives a random noise and generates features from the
noise. In discrimination process, it determines if a picture is
real. The result of the final game is: in the most ideal state, the
generator can generate features that is enough to disguise the
real feature. Learn from the structure of GAN, in this Section,
the score-based DPM is utilized as the generator to generate the
melspectrograms of the target domain with the source domain
melspectrograms as input.

Furthermore, we additionally add a discriminator to distin-
guish the real image from the target domain and the fake image
generated from the source domain. In this way, the diffusion
model can gain better generation ability. The structure of our
adversarial DPM model, which is named ADPM by us, is simi-
lar to GAN which has both a generator and a discriminator. Be-
sides the normal objective in DPM, the generative and discrim-
inative losses are also employed to help the model better differ-
entiate the real melspectrograms in target domain from the mel-
spectrograms generated from the source domain [19].Through
the adversarial process of the generator and the discriminator,
the DPM generator can generate more accurate target-domain
melspectrograms.

The input spectral features follow a distribution X = {x ∈
X}, where X is the distribution in the source domain. Similarly,
the feature maps in the target domain follows another distribu-
tion, Y = {y ∈ Y}. Following the idea, an adversarial loss
is applied which can help the features of the input approach the
target domain Y . The adversarial loss is defined as:

LADPM (GDPMX→Y , DY ) =Ey∼Y logD(y)+

Ex∼X log(1−D(GDPM (x)))

(7)

where GDPM (x) is the input features passed through the dif-
fusion model, and D is the discriminator.

2.3. Contrastive learning for domain adaptation

Cross-domain speaker verification can be regarded as a task to
map functions from source data to the target data. Adversarial
learning can fix the problem of domain mismatch, such as Cy-
cleGAN [4] which innovatively put forward cycle-consistency
objective to retain the content of the input image so that it can
return to the input image itself during the secondary conversion.
However, the function must be calculated forward and reversely
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Figure 2: The structure of our proposed ADPM.

under a pixel-wise situation which consumes large computa-
tional resources.

In non-parallel generation tasks, well-generated features
possess the content and speaker information of the source do-
main, and the distribution is similar to the target domain. The
proposed ADPM model shows strong abilities to fit the distri-
bution of the target domain, but has poor abilities to retain the
content of the source domain. Therefore, the NCE [8] is adopted
to preserve more information in the source domain. The main
theory of NCE is to minimize the distance between the current
small patch of image and its positive sample, and maximize
the distance between the patch and its N negative samples. It
is noted that the NCE function is only used in the encoder of
DPM (GDPM−enc). The objective of NCE is defined as:

ℓ
(
q,v+,v−) = − log




exp
(

q·v+

τ

)

exp
(

q·v+

τ

)
+ΣN

n=1 exp
(

q·v−
n

τ

)




(8)

where q means the query vector, v+ and v− are positive and
negative samples respectively as illustrated in Figure 2. τ is the
temperature parameter.

Inspired by [7], the query vectors are captured by small
patches which can represent local information of the whole fea-
ture image. That is, the patches can represent the local informa-
tion, such as phonemes, for better preserving the content infor-
mation of the source domain. The method is set up by the as-
sumption that the non-parallel correspondences is accumulated
by certain local information. Thus, the NCE loss is computed
based on small patches of last layer of encoder outputs. The
final loss function is shown in Equation 9.

LNCE (GDPM−encP,X) = Ex∼X

N+1∑

n=1

ℓ
(
qn,vn,v(N+1)\n

)

(9)

where n is the sample index of N negative samples.
Finally, the overall loss function of our method proposed

is a weighted-sum of diffusion losses, adversirial loss and the
NCE loss:

L = LDPM + LADPM + LNCE (10)

where the weight of each loss is set equally.

2.4. Speaker verification backend

After generating the spectral features with both the distribution
of the target domain and the content information of the source
domain, two different methods are proposed to make use of the
generated images for SV tasks. The first approach let the mel-
spectrograms feed into a conventional network for speaker veri-
fication together with the former features of the source domain.
The second one is to substitute the original features with the
generated features to prove the flexibility of our produced im-
ages. A ResNet34 [14] is trained as the back-end network to
verify multiple speakers.

3. Experiments
3.1. Datasets

The source domain data used is the VoxCeleb [20] Dataset
which is consist of the VoxCeleb1 [21] and VoxCeleb2 [22].
VoxCeleb1 contains 1211 speakers with 148642 utterances
while VoxCeleb2 contains 5944 speakers with 1092009 ut-
terances. All utterances from VoxCeleb are used for train-
ing. The Voices Obscured in Complex Environmental Set-
tings (VOiCES) [23] Dataset is regarded as the target do-
main dataset which is totally different from the source domain.
VOiCES comprises an Evaluation Set with 11392 utterances
and a Development Set with 15904 utterances from 196 speak-
ers. The Evaluation Set is the test set for verifying the perfor-
mance of our methods. All utterances of the Development Set
are served as the target domain resources, and the same number
of utterances is randomly sampled from the VoxCeleb Dataset
as the source domain resources, which aims to conduct the gen-
eration task proposed.

3.2. Experimental Settings

The 64-dimensional filterbank (Fbank) feature is extracted
within a 25ms hamming window for every 10ms. No Voice
Activity Detection (VAD) is adopted for Fbank features. No
data augmentation is adopted in the whole experimental pro-
cess. When training, the input features are cut into chunks that
only contain a length of 4s (400 frames).

For adversarial learning task, the DPM encoder contains
a 6-layer transformer encoder with two attention heads. Be-
sides, the DPM decoder is the U-net [18] structure which is
composed of a down-sampling and up-sampling ResNet net-
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work. The discriminator is the Patch-Discriminator same as
PatchGAN [24]. The iteration of the diffusion denoising pro-
cess is set to 100. The learning rate of the Adam optimizer is
0.01. The cross-domain DPM-GAN is trained for 127k steps
on single GPU (NVIDIA RTX 3090 with 24GB memory) with
a batch size of 20.

For SV task, the training of the ResNet34 [14] is conducted
on the ASV-Subtools [25] platform which is a PyTorch frame-
work. The learning rate of the stochastic gradient decent (SGD)
follows a ReduceLROnPlateau with a weight decay of 5e−4 and
a initial learning rate of 0.02. The AMsoftmax [26] loss is em-
ployed with a scale of 30 and a margin of 0.2. For the back-end
scoring, both LDA and PLDA is processed.

The Equal Error Rate (EER) and Minimum Detection Cost
Function (minDCF) is the evaluation metric for our speaker ver-
ification task. The better the SV system is, the lower EER it
gets. Moreover, the minDCF considers prior probability and
different costs, which is more reasonable than EER. The ptarget
is set to 0.01 in minDCF for evaluation.

4. Results
Table 1 shows the results of our proposed ADPM struc-
ture compared with several robust systems recently proposed.
DEAAN [27] and CDMA [28] are the best models for cross-
domain speaker verification. As is seen in Table 1, ADPM
achieves a relative EER improvement of 23.80% and 8.94%
compared to DEAAN and CDMA respectively. This proves that
the idea to generate more fbank features with the distribution of
the target domain can enhance the back-end training for speaker
verification task.

Table 1: Comparison of methods before and our proposed
method.

Model EER minDCF

DEAAN [27] 5.21 0.394
CDMA [28] 4.36 0.369
ADPM (combination) 3.97 0.328

4.1. Ablation study

In this Subsection, we experiment certain ablation studies to
prove the effectiveness of all the components proposed by us as
shown in Table 2. The Baseline system is a simple ResNet34
speaker embedding extractor trained on the source domain. The
eventual scheme of ADPM (combination) is to adopt joint train-
ing with both the source domain data and the generated data.
One may argue that it increases the amount of data to make
the supervised training of SV better. To address this problem,
the source domain data is replaced by the generated Fbank fea-
tures (ADPM (replacement)) to ensure the total utterances are
the same as the Baseline. It can be seen from the result that
even if the amount of data is not increased, our system shows
a relative drop of 3.44% in EER compared with CDMA. Fur-
thermore, the contrastive learning objective (NCE) is removed
with a relative increase of 5.54% compared to the whole archi-
tecture proposed, which means that the contrastive learning can
help the network preserve the content information of the source
domain and the distribution of the target domain. Eventually,
the adversarial learning objective is also eliminated (DPM). The
EER raise to 4.47% which proves that using DPM as a genera-
tor together with a discriminator can boost the performance to
better fit the source domain data to the target domain.

Table 2: Ablation study of all components proposed in ADPM.

Model EER minDCF

ADPM (combination) 3.97 0.328
ADPM (replacement) 4.21 0.346
ADPM - NCE (combination) 4.19 0.347
DPM (combination) 4.47 0.379
Baseline 6.62 0.548

4.2. Visualization of the generated features

As is seen in Figure 3, the most intuitive differences are the
background noise and silent parts (external attributes). There
is several continuous background noise in the source domain
feature map (a), in contrast, the target domain Fbank feature (b)
is relative cleaner and has more silent parts. The feature (c)
and (d) generated from (a) is cleaner than the source filed. It
can be shown that the distribution of the generated one is closer
to the target domain data, while the content information of the
source domain, such as pitch period and high pitch (speaker
information), etc, is also preserved. The visualization of the
acoustic features can prove the generation performance of our
model.

Figure 3: A visualization for the acoustic features, where (a)
is from the source domain, (b) is the target domain feature
map, (c) is the generated feature with the input of the same ut-
terance (a) by ADPM, and (d) is the generated feature from a
random selected sample in source domain.

5. Conclusions
In this paper, an adversarial DPM method with contrastive
learning (ADPM) which can fit the source domain data to the
target domain data to achieve better performance in domain
shift speaker verification is proposed. First, a diffusion model
is applied to generate acoustic features of the target domain.
Second, adversarial learning objective is utilized to gain better
performance in generation. Third, the NCE contrastive learning
loss helps the network resume the content information of the
source domain to avoid feature distortion. The model proposed
achieves 8.94% decrease of EER. In future, we will make use
of the joint learning to train the generation task and the speaker
verification task simultaneously to acquire better performance
in cross-domain speaker verification.
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