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Abstract
MRI recordings of the vocal tract allow researchers to obtain
anatomical cross-sections in a non-invasive way, providing an
important tool for speech production research. Acquiring MRI
at equally high temporal and spatial resolution remains, how-
ever, challenging. We propose an image processing method for
synthesising a real-time high spatial resolution 3D movie given
real-time 2D MRI and static high spatial resolution 3D MRI
data from the same speaker. We evaluate our method on a pub-
lic dataset with 17 speakers, showing that a real-time 2D movie
of the vocal tract during a speech task can be encoded by com-
binations of a small number of its frames. These combinations
can be transferred to the domain of the high spatial resolution
3D data with static vocal tract articulations matched to frames
of the 2D movie, synthesising a 3D movie of the speech task.
Our algorithmic method provides a generic approach that can
complement technical improvements of the acquisition process.
Index Terms: 3D real-time MRI, speech production, vocal tract

1. Introduction
In speech, the sound is produced by the vibration of the vo-
cal folds and the configuration of the vocal tract. Analysing
the shapes taken by the vocal tract is therefore crucial for un-
derstanding speech production mechanisms. The emergence of
the non-invasive and non-ionising Magnetic Resonance Imag-
ing (MRI) technology for speech production in the 1990s was
a breakthrough for articulatory studies [1]. It allowed the safe
acquisition of anatomical cross-sections of the vocal tract with
visualisation of the soft and hard tissues. However, the long ac-
quisition time forced the speaker to sustain an articulation for
several seconds without movement, far from real speech expe-
rience.

A second breakthrough occurred in the 2000s and be-
came very popular for speech production studies: In real-time
MRI [2], frames are acquired at a high temporal resolution, typ-
ically several tens of images per second [3], enough to record
dynamic speech. Although this was a major improvement, it
came at the cost of lower image quality, resolution and anatom-
ical accuracy, as well as the loss of 3D information.

Improving these parameters for real-time MRI of the vocal
tract is the object of ongoing research. Almost all studies focus
on the MRI acquisition process [4]. While this may be the most
intuitive approach, it depends on the progress in MRI technol-
ogy and appears technically challenging. Here, we propose an
alternative approach that relies on image processing: Combin-
ing high temporal but low spatial resolution 2D MRI data with
high spatial resolution 3D MRI data to obtain 3D MRI data with
both high temporal and high spatial resolution. An initial, semi-
automatic attempt has already been proposed [5], but our study

Figure 1: Left: Frame from a 2D low-resolution real-time movie
(USC data [6]). Right: The same frame from the synthesised 3D
high-resolution real-time movie (midsaggital view).

introduces a more generic approach, fully automatic and appli-
cable also to long speech recordings as opposed to the short
vowel/consonant sequences in [5].

Figure 1 illustrates our method: We replace a frame of the
real-time MRI movie on the left by a synthesised 3D MRI image
on the right. As a result, we generate a high-resolution 3D real-
time movie from the low-resolution 2D real-time MRI movie.
The approach requires for each speaker a (low-resolution) real-
time MRI movie and a limited number of high-resolution (pos-
sibly 3D) MRI images recorded for articulations representative
of the speaker’s articulatory repertoire.

Technically, we synthesise a high-resolution 3D movie
based on a generative model that 1) assigns the small number of
static 3D volumes to their best matching frames from the low-
resolution movie and that 2) encodes the low-resolution movie
through linear combinations of these frames. The same combi-
nations can then be applied to the matching static 3D volumes,
thereby creating the synthesised movie.

2. Method
2.1. Notation and problem statement

Given 2D and 3D MRI data from the same speaker:
• The (ml × nl) matrix L: 2D MRI movie (real-time; low

spatial resolution) with ml pixels and nl frames. Free speech.
The columns of L contain 2D frames flattened into vectors.

• The (mh × nh) matrix H: 3D MRI volumes (high spatial
resolution) with mh voxels and nh volumes. The volumes,
thereafter basis volumes, are isolated articulations represen-
tative of the articulatory repertoire of the speaker (volumes
flattened into vectors).

Synthesise a high-resolution 3D MRI movie matrix M
of dimensionality (mh × nl) by combining the information
from L and H .
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2.2. Method overview

The movie L shows one articulation or state of the vocal tract
per frame. L contains redundancy in the sense that many artic-
ulations are transitions between target articulations. It is known
that a well-chosen limited set of articulations is sufficient to re-
construct any articulation of a speaker [7]. Hence, we assume
(1) that L can be encoded through linear combinations of a lim-
ited set of its columns (frames) and (2) that H also contains
such a set of representative articulations.

Formally, we assume that L is low-rank and can be approx-
imated by linear combinations of a small number of its columns
identified by the index set κ = [κ1, . . . , κc] of length c ≪ nl.
Hence, if we select a sufficiently large index set κ, the norm er-
ror ||L − L( :, κ)X|| is very small, such that we obtain a good
approximation: L ≈ L( :, κ)X . Here, L( :, κ) denotes the sub-
set of frames selected from L, and X is a (c × nl) coefficient
matrix that describes the contribution of the c selected frames
to each of the 1, . . . , nl frames of L.

The coefficients in X model each frame of L as a combina-
tion of the selected frames. If we assume that X ∈ R≥0, only
additive mixtures of the frames in L( :, κ) are allowed. This
enforces more realistic combinations: A frame can then not be
modelled through subtracting a frame, but only positively as,
for example, 0.7 L( :, κ1) + 0 L( :, κ2), . . . , + 0.3L( :, κc),
indicating that it contains mostly the articulation in frame κ1,
but with a contribution of κc, modelling a transition.

If we further assume that, for a sufficiently long speech task,
there is at least one frame from L that corresponds to one of the
basis volumes from H , we can encode L through linear combi-
nations of the frames matched to the basis volumes in H . The
same coefficients that determine the encoding of a frame L(:, i)
can then be applied to combine the columns of H , synthesising
the volume frame M(:, i) of the high-resolution movie.

In the following, we describe the steps of our method: First,
we first assign the basis volumes (in practice, we use midsagittal
images to facilitate the matching) from H to their best-matching
frames from L, determining the index set κ (Assignment: Sec-
tion 2.3). In a second step, we then find the coefficient matrix X
to reconstruct L ≈ L( :, κ)X from the selected frames (Encod-
ing: Section 2.4). Finally, the coefficients in X are employed to
combine the articulations in H , synthesising the high-resolution
movie M (Synthesis: Section 2.5).

2.3. Assigning the basis volumes from H to frames of L

2.3.1. Preprocessing

The 2D frames and 3D volumes are from the same speaker, but
have been recorded with different acquisition parameters. Thus,
they are not in the same coordinate space and have a different
image appearance. Preprocessing is required to correct for this:

• Create 2D midsagittal projections of the 3D volumes in H
that match the midsagittal view in the 2D frames in L (done
in [8]). We denote the matrix containing the 2D basis images
by H2D.

• Correct for shift and rotation differences: (1) Register the
mean frame of L to the mean basis image of H2D by affine
registration (performed using the Matlab function imregt-
form, metric: MattesMutualInformation, optimizer: OnePlu-
sEvolutionary); (2) Apply the registration parameters to all
frames of L.

• Create a binary vocal tract mask v based on the pixels that
exhibit changes over time: These are the parts of the image

where the articulators are located. In particular, compute the
median absolute deviation (MAD) along the time dimension
of L, followed by spatial low-pass filtering of the MAD im-
age (convolution with a large Gaussian kernel with σ = 15)
and thresholding to obtain a binary mask.

• Filter all images from L and H2D by a spatial low-pass filter
(convolution with a Gaussian kernel with σ = 2) to reduce
noise, and then multiply with the vocal tract mask v.

• The mean frame of the movie accounts for the largest part
of the appearance difference between the low- and the high-
resolution versions. Subtract the mean frame, i.e. L− L and
H2D −H2D, to reduce the appearance difference and to focus
on the moving parts that deviate from the mean.

2.3.2. Matching process

For the ith basis image H2D( :, i), we find the frame L( :, j)
that minimises a dissimilarity function d(H( :, i), L( :, j)). It
is defined as 1 - the Jaccard (also known as Tanimoto) similarity
between the preprocessed images h ∈ H2D and l ∈ L:

d(h, l) = 1− h · l
||h||2 + ||l||2 − h · l

We thereby obtain an assignment of the i = 1, . . . , nh ba-
sis images in H2D to nh distinct frames of L identified by the
index set κ, and referred to as basis frames. Technically, we em-
ploy the dissimilarity function d() to compute the entries of the
(nh × nl) cost matrix D and then solve an optimal assignment
problem with the Hungarian algorithm [9, 10].

2.4. Encoding the low-resolution movie L

We compute the coefficient matrix X ∈ R≥0 by solv-
ing a non-negative least squares problem (NNLSQ). With a
NNLSQ solver (Matlab function lsqnonneg; Lawson-Hanson
algorithm [11]), we can find the X ∈ R≥0 that minimises
||L − L( :, κ)X|| given the movie L and the basis frames
L( :, κ).

If many basis frames contribute with non-zero coefficients
to the reconstruction of each frame, we may obtain a better ap-
proximation to L, but potentially at the cost of blurriness re-
sulting from averaging many images. The non-negative least
squares approach (NNLSQ) computes a matrix X that is both
good at reconstructing L and sparse (containing few non-zero
coefficients), such that each frame is modelled based on only
few most relevant basis images.

If we assume an ideal, hypothetical case in the absence of
noise where L( :, κ) contains in fact the exact generators of L,
i.e. L = L( :, κ)X , X ∈ R≥0, meaning that each frame is an
additive mixture of one or more of the generators, then NNLSQ
yields the optimal X , and L is recovered exactly from only c of
its frames.

2.5. Synthesising the high-resolution movie M

The (nh × nl) coefficient matrix X models each frame of L
as a combination of the nh basis frames in L, and these basis
frames are matched to their basis images counterparts in H2D

(mh × nh). Hence, we can use X to compute the (mh × nl)
high-resolution 3D movie matrix M by matrix multiplication,
M := HX (or the 2D variant M 2D := H2DX), modelling
each frame of the synthesised movie as a linear combination of
the nh basis volumes from H with coefficients optimised on the
movie L.
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Figure 2: Assignment: Values for the matched H2D vs. L frames
for the lip aperture (left) and the velum-tongue distance (right)
for the 5 manually annotated speakers (dots); linear regression
line (solid line) and 95% confidence interval (filled area).

3. Results
3.1. Data

For evaluation, we relied on the publicly available USC Speech
and Vocal Tract Morphology MRI Database [6] with 17 Amer-
ican English native speakers. We used a subset consisting of:
(1) 2D midsagittal real-time MRI recordings of the "north wind
passage", about 1000 frames of spatial resolution 2.9 mm2/pixel
recorded at 23.18 frames/s, representing the movie L, and
(2) 3D MRI recordings representative of the speakers’ articu-
latory repertoire, nh ≈ 30 articulations sustained for 7 s and
of spatial resolution 1.5625 mm3/pixel, representing the basis
volumes H . The manually outlined vocal tract contours of the
H2D sets are available from a previous study [8].

3.2. Results

There are two possible sources of errors:
1. The assignment of the basis volumes H to their best-

matching frames in the low-resolution L may be wrong.
Then, the movies M and M 2D are combined from wrong ba-
sis volumes or images.

2. The encoding of the low-resolution movie matrix L in terms
of the selected frames κ may not be accurate enough, i.e. the
norm error ||L − L( :, κ)X|| is too high. If the coefficients
in X do not reconstruct L well, they will also not be suitable
for synthesising the new movie M .

3.2.1. Assignment

We evaluated the assignment between the basis images H2D and
the basis frames of L based on features describing shape and
position of the articulators. The features were derived from the
existing contours for H2D and from manual annotations on 5
speakers for L.

We considered three major articulators, the lips, the velum
and the tongue, measuring the aperture of the lips and the dis-
tance of the middle point of the inferior face of the velum to
the tongue. For the tongue, principal components analyses

Figure 3: Assignment: Values for the matched H2D vs. L frames
for the 4 tongue parameters (top-left: front-back, top-right: up-
down, bottom-left: tip up-down, bottom-right: back position)
and linear regression line (solid lines) per speaker for the 5
manually annotated speakers.

were applied on four different subsets of the contours to cap-
ture the articulatory components describing (1) the frontward-
backward position and shape, (2) the upward-downward posi-
tion and shape, (3) the upward-downward position and shape
of the tongue tip and (4) the position and shape of the back of
the tongue. This approach is inspired from known shape com-
ponents of the tongue [7]. The principal component scores for
the basis frames and images characterise the tongue according
to these components.

We plotted the feature values obtained for each basis image
in H2D against the values for their matching frames from L for
the lip aperture and the tongue-velum distance (Figure 2), and
for the tongue parameters (Figure 3). The position and shape of
the articulators were consistent between the H2D basis images
and the L basis frames, but with a relatively high level of noise.

3.2.2. Encoding

To analyse how well the the low-resolution movie L can be re-
constructed by combination of the frames κ, we computed the
norm reconstruction accuracy (in percent of the norm of L):

reconstruction accuracy := 100− (
||L − L( :, κ)X||2

||L||2 ∗ 100)

Figure 4 shows the frame-by-frame reconstruction accu-
racy along the time axis of the movie L for a single speaker.
The accuracy was generally high with a mean of 96.6% (dotted
line). We subsequently calculated the distance between the orig-
inal movie and a random time permutation of the reconstructed

speaker 1 2 3 4 5 6 7 8 9
rec. accuracy 96.6 96.42 97.41 96.93 97.39 96.49 97.82 96.34 97.97
rec. accuracy (permuted) 91.26 (0.09) 89.94 (0.09) 93.26 (0.07) 91.65 (0.08) 91.53 (0.1) 89.34 (0.1) 94.59 (0.04) 89.78 (0.08) 94.06 (0.05)
speaker 10 11 12 13 14 15 16 17
rec. accuracy 97.14 97.09 96.85 96.94 96.87 96.62 96.6 97.21
rec. accuracy (permuted) 93.08 (0.05) 93.23 (0.06) 91.35 (0.1) 90.87 (0.08) 90.61 (0.08) 91.53 (0.08) 89.42 (0.09) 92.42 (0.08)

Table 1: Reconstruction accuracies (in percent of ||L||). Top: original low-resolution movie. Bottom: Mean (standard deviation) over
100 random permutations of the time dimension.
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original reconstructed

Figure 4: Encoding: Reconstruction accuracy by frame
(speaker 1). Dotted line: mean reconstruction accuracy
(matching frames). Dashed line: mean reconstruction accuracy
over 100 random permutations (non-matching frames). Image
pairs visualise reconstruction at four time points (left: original,
right: reconstructed). Top: two reconstructions with high ac-
curacy. Bottom: two reconstructions with accuracy lower than
baseline (dashed line).

movie to serve as baseline. The mean reconstruction accuracy
over 100 of such permutations (dashed line) was 91.26%. The
vast majority of the reconstructed frames was clearly above this
baseline (Figure 4). For all speakers, the frames κ that were se-
lected by matching the basis images in H2D could reconstruct
the low-resolution movie L well with a mean reconstruction
accuracy of 96.98%. (Table 1). The frame reconstructions
were also specific as established by the permutation analysis:
Across all speakers, the reconstruction accuracy was higher for
the original L than for the permuted variants of L (Table 1).

3.2.3. Accuracy of the synthesised movie

The synthesised movie M was evaluated by calculating the sim-
ilarity between the low-resolution movie L and the synthesised
high-resolution movie M 2D and, as a baseline, the similarity be-
tween L and 100 random time permutations of M 2D: Overall,
the mean Jaccard similarity was higher between matching than
between non-matching frames resulting from random permuta-
tions (Figure 5a). Hence, on average the synthesised frames in
H were specific for their matching frames from L.

Figure 5b shows examples for the synthesised frames. The
supplementary material1 contains examples for basis images
matched between H2D and L and synthesised high-resolution
3D movies for two speakers.

1https://github.com/tonioser/supplementary-material-
Interspeech2023-paper804

a) b)

Figure 5: Synthesised movie: a) Mean Jaccard similarity of
matching frames (and non-matching frames as controls) from
the low-resolution movie L and the synthesised high-resolution
movie M 2D (after subtracting the mean frame and vocal tract
masking). Boxplots summarise the mean Jaccard similarities
for all 17 speakers from the USC data. b) Qualitative examples.
Left: original 2D real-time movie, Right: synthesised 3D real-
time movie (midsaggital view).

4. Discussion

The generative model for synthesising a 3D real-time movie is
interpretable in the sense that it is transparent how each frame is
computed. The accuracy of both the assignment and the encod-
ing stage can be measured, and if both are sufficiently accurate
we can be confident in the accuracy of the synthesised movie.

We found that the real-time movies L could be encoded
with high reconstruction accuracies ≥ 96%. For this encoding
to be useful for synthesising the 3D movie, the frames need to
be assigned to the correct basis images in H2D . Our results
show that parameters describing position and shape of the ar-
ticulators were indeed correlated between the matched images,
although not perfectly.

The present approach is limited by the across-modality as-
signment of basis images in H2D and L. While we employ
preprocessing and an automatically generated vocal tract mask
to focus on the relevant parts, the assignment is nevertheless
performed on a pixel level. Future versions could implement
the assignment based on automatic segmentations of the vocal
tract [12], such that the articulators shape and position can be
matched and evaluated explicitly. Another limitation is that a
basis image in H2D might not have a good match in the real-
time movie L. This could be addressed by using all available
movies from the same speaker as a reservoir or by attempting to
synthesise a basis image in the low-resolution domain.

This paper presents a proof of the concept, showing how
real-time MRI movies and static 3D MRI volumes can be com-
bined to synthesise 3D real-time movies. Future versions will
address improvements of the assignment step, utilizing for ex-
ample deep learning techniques for segmentation or image syn-
thesis, or could rely on data where a limited set of correspond-
ing basis images covering the speaker’s articulatory repertoire
has been recorded in both 2D and in 3D MRI.

Integrating high temporal and high spatial resolution MRI
from the same speaker is a generic way of improving data qual-
ity in vocal tract measurements, and it can be applied on top of
technical advances in the MRI acquisition process.
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