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Abstract
Speech emotion recognition for natural human-to-human con-
versations has many useful applications, including generating
comprehensive meeting transcripts or detecting communication
problems. We investigate the detection of emotional hotspots,
i.e., regions of increased speaker involvement in technical meet-
ings. As there is a scarcity of annotated, not-acted corpora, and
to avoid introducing unwanted biases to our models, we fol-
low a cross-corpus approach where models are trained on data
from domains unrelated to the test data. In this work we pro-
pose a model ensemble trained on spontaneous phone conver-
sations, political discussions and acted emotions. Evaluation is
performed on the natural ICSI and AMI meeting corpora, where
we used existing hotspot annotations for ICSI and created labels
for the AMI corpus. A semi-supervised fine-tuning procedure is
introduced to adapt the model. We show that an equal error rate
of below 21% can be achieved using the proposed cross-corpus
approach.
Index Terms: emotion recognition, human-computer interac-
tion, computational paralinguistics.

1. Introduction
Speech does not only convey words but also paralinguistic in-
formation, e.g., a speaker’s emotional state. This informa-
tion typically gets lost in the transcript of a conversation. A
computer’s ability to understand a human conversation, or to
communicate with humans, could be significantly improved by
enriching transcripts using speech emotion recognition (SER).
Various practical applications can be imagined, e.g., more com-
prehensive meeting summaries, detecting communication prob-
lems, or improved human-computer interaction. Even though
SER has been studied for decades [1], very few such applica-
tions exist today. We believe that one of the reasons is a scarcity
of research on SER for natural, not-acted data, where the exper-
imental setup has been designed to match an actual application.

The goal of the work described in this paper was to create a
baseline system for enriching transcripts of technical meetings
with emotional information extracted from the speech signal.
More specifically, the system detects emotional hotspots which
are defined as regions of increased speaker involvement [2].

We evaluate the accuracy of the proposed system on two
popular corpora, the ICSI Meeting Corpus [3], and the AMI
Meeting Corpus [4], created by recording and annotating
project meetings at research institutes in US and Europe. Due
to the realistic setup when collecting the datasets, emotional
events, including hotspots, occur relatively rarely. The sparse-
ness of events, combined with the limited size of the corpora,
increases the risk of overfitting a model if trained on the meet-
ing corpora themselves. The models may learn invisible biases,

e.g., caused by the correlation of speakers or discussion topics
with emotional events. To ensure that evaluation results reflect
a model’s ability to detect emotional events, and nothing else,
we follow a cross-corpus approach where the test corpora are
not used for training. According to [2], hotspots are related to
the emotional dimension of ‘activation’, or ‘arousal’. There-
fore, our approach is based on a set of models trained for dif-
ferent types of labels but generate scores that are expected to
correlate with the arousal of a speaker. Hotspot detection is per-
formed by combining models developed and published by oth-
ers for conflict intensity estimation [5], laughter detection [6],
and emotion classification [7]. These models have been trained
on political discussions from the SSPNet Conflict Corpus [8],
telephony conversations from the Switchboard corpus [9], and
finetuned for acted emotions contained in the IEMOCAP data
set [10]. Models are combined using a linear interpolation of
scores, where the weights are optimized on a development par-
tition of the ICSI meeting corpus. We also investigate the adap-
tation of the conflict intensity estimation model.

1.1. Related work

For a more detailed acoustic-prosodic analysis of the hotspots
in the ICSI meeting corpus, we refer the reader to [2]. An early
work for automatic hotspot detection in the ICSI meeting corpus
has been described by Laskowski [11]. The author leveraged the
available reference speech and laughter segmentations to extract
low-level vocal activity features, which are fed into a classifier.
More recently, automatic hotspot detection for the ICSI meeting
corpus has been investigated by Makhervaks et al. in [12]. Sim-
ilar to our work, a score combination is proposed to detect the
hotspots. Prosodic features are extracted from the speech signal
and combined with speaker activity, lexical, and laughter count
features. This is in contrast to our work where we do not use
any manual transcription, lexical or prosodic feature extraction,
or even use the ICSI meeting corpus for training. The authors
[12] mention that manual transcriptions and the lack of valida-
tion on an independent meeting corpus make it difficult to judge
whether the performance figures reported could be achieved in
a real application.

Applying a cross-corpus approach to address the issue of
generalization in SER has already been proposed by others, see,
e.g., [13] for one of the earliest works in this area. A recent lit-
erature review on this subject has been published by Zhang et
al. in [14]. Most of the results are for acted emotions, which
are difficult to transfer to real-world applications [1]. To best
of our knowledge, hotspot detection in meetings has not been
explored using a cross-corpus approach. In cross-corpus SER,
different methods have been proposed to reduce the mismatch
between training and test corpora. One popular research di-
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rection is to improve the generalization of the models, e.g., by
multi-task learning with large amounts of unlabeled data [15].
Other approaches leverage transfer learning to improve mod-
els pre-trained on mismatched data, see e.g., [16]. The semi-
supervised adaptation procedure described in this paper is com-
parable to the latter, except that we had to adjust the method to
deal with the reference labels’ sparsity by including the scores
of the pre-trained model.

1.2. Contributions

The main contributions of the paper are the following: To our
knowledge, this paper is the first to report hotspot detection re-
sults for ICSI and AMI meeting corpora using a cross-corpus
approach. It demonstrates that robust hotspot detection on nat-
ural, realistic data can be performed with a simple shallow en-
semble of various models trained on highly mismatched data.
In addition, we introduce an adaptation method for the conflict
estimation model that is robust to the highly imbalanced label
distribution. Finally, we provide a new labeling of a subset of
the AMI meeting corpus.

2. Data
2.1. ICSI Meeting Corpus

The ICSI meeting corpus [3] is a collection of 75 natural, i.e.,
not-acted, meetings at the ICSI research institute, totaling about
72 hours (including silence). All meetings were in the English
language. A significant proportion of speakers is non-native.
Further details on speaker demographics, recordings setup, tran-
scription can be found in [3]. Here we focus on how the data
has been prepared for our experiments. The meetings have been
recorded with desktop and headset microphones; each headset
channel corresponds to a speaker. For each channel, an utter-
ance segmentation is provided. Hotspot labels are provided for
each speaker and each segment. Hotspots can have different in-
tensity levels (hotness): the three primary levels are ‘lukewarm’,
‘warm’, and ‘hot’. Each label contains additional information,
e.g., valence, which is ignored here. Details can be found in
[2, 17].

As we found the audio quality of the desktop microphone
channels unacceptable, we mixed all headset microphone chan-
nels into a single channel. The following procedure ensures no
contradicting labels when mapping the speaker-specific hotspot
labels to the mixed channel: All hotspot segments that over-
lap in time get merged. If the intensity level of those segments
differs, the segment is assigned the ‘hotter’ label. Segments
that overlap with a hotspot, but are not a hotspot, are removed.
Overlap is defined as having overlapping start/end times or a
gap of less than 0.5 seconds. As concise segments often corre-
sponded to noises, we removed all segments with a duration of
< 1 second. The average duration of the remaining segments is
10 seconds.

Note that this data preparation procedure differs from the
one described in [12]. Makhervaks et al. mapped the hotspot la-
bels to fixed-length segments, which introduces partial overlaps
with the original utterance-level segmentation, and may result
in segments being labeled as hotspots, but missing their acous-
tic realization (e.g., short laughter).

The merged segments are split into two partitions, a devel-
opment set containing all segments from 24 meetings and a test
set containing the remaining 51 meetings. There is no train set
as we do not train models on the corpora used for evaluation.
Tab. 1 provides all details on the label distributions in the result-

ing database. Clearly, the hotspot distribution is highly skewed
- less than 9% of all segments have been labeled as hotspots,
and just 1% have been marked as ‘warm’ or ‘hot’.

Table 1: Label distributions for the prepared ICSI data.

Dev. Test All

# Meetings 24 51 75
# Segments 6593 14304 20897

# ’hot’ hotspots 0 8 8
# ’warm’ hotspots 44 199 243

# ’lukewarm’ hotspots 464 1135 1599
Total duration [h] 18.9 39.0 57.9

Listening to various segment files marked as hotspots led us
to conclude that we could not distinguish ‘lukewarm’ hotspots
from segments not marked as hotspots. We focused only on de-
tecting segments labeled as either ‘warm’ or ‘hot’ and removed
the ‘lukewarm’ labels from the test set. We kept the ‘lukewarm’
in the development set, however, for robust parameter estima-
tion.

2.2. AMI Meeting Corpus

The AMI meeting corpus [4] consists of 100 hours of tran-
scribed meetings in the English language recorded at different
research institutes. The original recording has been multi-modal
and with various scenarios; for the experiments in this paper we
only use the audio signals of the ‘headsetmix’ signals of 26 nat-
ural meetings recorded in Edinburgh and Idiap. As no hotspot
labels were available for this corpus, we cut the 26 meetings,
which total 23 hours, into 2735 non-overlapping 30-second long
segments. The segments were distributed to seven raters, each
assigned to three different raters. The raters were asked to lis-
ten to each segment at least once and then classify it as either
containing ‘no hotspot’, ‘neutral hotspot (clarification, sugges-
tion)’, ‘negative hotspot (conflict, disagreement)’ or ‘positive
hotspot (amusement, agreement)’. This effort is still ongoing.
At the time of writing, we had obtained more than 5000 rat-
ings. For 433 segments, we had three ratings from five raters
that each had labeled more than 100 segments, allowing us to
do a majority voting. If two or three raters labeled a segment
as a hotspot of any type, it was labeled as ‘hotspot’; otherwise,
it received a ‘no hotspot’ label. The pairwise inter-rater agree-
ments for the five raters, measured using Krippendorff’s alpha
[18], are shown in Tab. 2. The average agreement is 0.48, which
is an acceptable range for such a highly subjective task.

Table 2: Pairwise inter-rater agreement for five raters of the
AMI corpus. ‘n/a’ indicates that the number of the segments
labeled by both raters was below 100.

Rater ID 6 1 3 2 4

6 1.00 0.61 n/a n/a 0.42
1 0.61 1.00 0.52 0.31 0.51
3 n/a 0.52 1.00 0.49 0.49
2 n/a 0.31 0.49 1.00 n/a
4 0.42 0.51 0.49 n/a 1.00

Because the labeled subset of the AMI corpus is quite small,
we did not split it into development and test partitions. Con-
sequently, no parameters, like interpolation weights or other
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model parameters, are optimized on the AMI corpus. How-
ever, the same values optimized for the development partition
of ICSI are applied when testing with the AMI corpus. Thus,
AMI is used as an independent test corpus. The corresponding
label distributions are shown in Tab. 3. Interestingly, we have
a much higher percentage of hotspots in the AMI corpus than
in the ICSI corpus; 39% of all segments receive a hotspot la-
bel. This may be due to the raters having a higher sensitivity
for hotspots or other reasons, like the AMI meeting participants
being generally more ‘involved’. We plan to investigate this as
soon as we have completed labeling a more significant propor-
tion of the corpus.

Table 3: Label distributions for the prepared AMI data.

Test

# Meetings 26
# Segments 433

# hotspots 169
Total duration [h] 3.6

2.3. Training Corpora

The conflict intensity estimation model has been trained on the
SSPNET Conflict Corpus [8]. The corpus comprises 12 hours
of French political debates, recorded on television. The record-
ings were cut into 30-second long segments and assigned a con-
flict intensity score by averaging the estimates provided by ten
different raters who were not speaking French.

The laughter detection model has been trained on the
Switchboard Corpus [9], a collection of 240 hours of tran-
scribed, spontaneous telephony conversations in English. Each
conversation is about five minutes long. The transcripts contain
laughter annotations including detailed start and end times.

The emotion classification model has been pretrained on
the Libri-Light [19] corpus, a collection of 60k hours of au-
diobooks in English. For finetuning, the IEMOCAP dataset
[10] has been employed. IEMOCAP contains about 12 hours
of read and spontaneous English speech from ten actors. The
acted emotions have been annotated with ten different catego-
rial labels. For creating the emotion classification model the
popular setup of just four emotion classes as targets has been
deployed: sadness, happiness+excitement, anger, and neutral.

3. Experimental Setup
ICSI and AMI meeting corpora are not used for model training.
Instead, we re-use three different models developed and pub-
lished by others for other data: A conflict intensity estimator,
a laughter detector, and an emotion classifier. The following
sections provide a short overview of these models, focusing on
how we applied them to the meeting datasets.

3.1. Conflict Intensity Estimation

Conflict detection in human communication involves identify-
ing speech with opposite or negative verbal cues [20]. Rajan et
al. [5] introduced a convolutional-recurrent architecture with an
attention mechanism for estimating the intensity of conflict in a
conversation. The work achieved state-of-the-art results for the
SSPNet Conflict Corpus at the time of publication. The end-to-
end network, which they call ConflictNET, directly processes a
30-second segment of speech samples. Feature extraction is re-
placed by several convolutional layers which learn the relevant

speech properties from the training data. An attention layer en-
ables the network to learn acoustic events which do not span the
whole input segment. The network is trained to maximize the
Pearson Correlation Coefficient [21], i.e., a linear correlation
between the single output neuron and a conflict intensity mea-
sure that, after scaling, ranges between −1 and +1. We lever-
age the code published by the authors1. The following changes
were applied to the code: First, the input signal is not downsam-
pled but the full 16 kHz sampling rate is used, doubling the in-
put segment size. Second, the input signal’s Root Mean Square
(RMS) amplitude is not normalized anymore. Third, when ap-
plying ConflictNet to the ICSI corpus, segments with a length
of less than 30 seconds are not zero-padded but repeated until
the whole input segment is filled with audio samples.

3.2. Laughter Detection

For laughter detection we applied a model published by Gillick
et al. [6]. It is based on a ResNet-18 architecture which pro-
cesses 128-dimensional Mel spectrograms as features. The
model has been trained on data from the Switchboard corpus,
which contains annotations for laughter. We directly down-
loaded the model trained and shared by the authors2. We pro-
cessed all segments of the meeting corpora using the default
parameter settings, i.e., a detection threshold of 0.5 and a min-
imum laughter length of 0.2 seconds. Preliminary experiments
indicated that there is some potential in tuning these parame-
ters for our test corpora, which is something we are going to
investigate in the future.

3.3. Emotion Classification

For the emotion classification we downloaded a pretrained large
model with HuBERT topology [22] from Huggingface3 [23].
The model has been fine-tuned over the 4-class (neutral, sad,
angry, happy) IEMOCAP dataset with a leave-one-session-out
training strategy. The development of this component leveraged
the s3prl open source toolkit4 [7].

3.4. Evaluation Measures

As we deal with a detection problem, we evaluate a model by
computing False Accept Rates (FAR) and False Rejection Rates
(FRR) for a reasonable range of detection thresholds. FRR rep-
resents the proportion of false negatives, i.e., segments in a test
set that are scored below the threshold but are a hotspot. FAR
is the proportion of false positives, i.e., segments scored equal
to or above the threshold but are not a hotspot. Equal Error
Rate (EER) is the error rate where FAR and FRR are equal. The
lower the EER, the better the system. We also report the Un-
weighted Average Recall (UAR), which is the average of the
proportions of the true positives, i.e., hotspot segments that are
scored above the threshold, and true negatives, i.e., segments
that are scored below the threshold and which are not a hotspot.
The higher the UAR, the better the system. The UAR reported
for a given model is always the highest UAR that could be
achieved for all detection thresholds.

1https://github.com/smartcameras/ConflictNET
2https://github.com/jrgillick/laughter-detection
3https://huggingface.co/facebook/hubert-large-ll60k
4https://github.com/s3prl/s3prl/tree/main/s3prl/downstream/emotion

1022



3.5. Model Ensemble

If we consider each of the models for conflict intensity esti-
mation, laughter detection, and emotion classification as source
of useful information about the arousal level of an utterance, it
makes sense to try to combine them to get improved results. In
preliminary experiments we tried different ways to combine the
models. Ultimately, it worked best to normalize each model’s
scores by subtracting a model-specific mean and dividing by
a model-specific standard deviation. The normalized scores of
the different models are then combined by linear interpolation.
The optimal interpolation weights are determined on the ICSI
development set using an exhaustive search that tries out all
interpolation weights between −1.0 and 1.0 in steps of 0.25.
For six different scores 96 ≈ 0.5M combinations are evaluated,
and the one that leads to the highest UAR is selected. Our ex-
periments showed that many weight combinations lead to very
similar UARs. We also tried minimizing EER instead of maxi-
mizing the UAR, which made no difference.

3.6. Semi-Supervised Model Adaptation

We investigated whether adapting the ConflictNET model to
the ICSI development set can improve results. As the hotspots
rarely occur, simply re-training or finetuning using existing la-
bels impairs the model. Therefore we first scored the ICSI de-
velopment set with the pre-trained ConflictNET model. Then
we heuristically modified the scores depending on the labels. If
a segment was labeled as ‘lukewarm’, we increased the score by
1. For segments labeled ‘warm’, we increased the score by 2.
Finally, for segments labeled ’hot’, we increased by 3. We then
finetuned the ConflictNET model on the modified scores. This
semi-supervised method ensures the model does not deviate sig-
nificantly from the pre-training, but can adapt to the hotspots in
the ICSI development set.

4. Results and Discussion
The results for the different models, individually and in combi-
nation, are shown in Tab. 4.

Table 4: Results on ICSI and AMI testsets.

ICSI Test AMI Test
EER UAR EER UAR

Model comb. [%] [%] [%] [%]

Conflict 25.6 75.1 30.7 70.4
Laughter 35.8 64.2 31.3 68.7

Happy 31.9 69.0 43.2 60.6
Sad 59.8 50.0 52.8 50.0

Angry 45.5 55.2 50.9 52.2
Neutral 65.1 50.0 56.1 50.0

All 23.4 77.3 29.0 74.8
Confl. adapt. to ICSI Dev. 22.0 79.2 31.4 69.1

All with adapt. Confl. 20.9 79.5 29.6 74.1

The conflict intensity score has the lowest EER from all
individual scores, with laughter being the second best. From
the emotion classes, only ‘happy’ seems to provide helpful in-
formation for hotspot detection. The combination of all scores
provides the lowest EERs on both test corpora. Adapting the
conflict intensity estimation to the ICSI development set helps
for the ICSI testset but does not seem to reduce the EER on the
AMI testset – this indicates that the ConflictNET model may
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Figure 1: DET for the best model ensemble on ICSI and AMI.

learn corpus-specific information during adaptation, e.g. speak-
ers. On the other hand, the adapted model does not perform
much worse on the AMI corpus indicating that overfitting could
be avoided.

When considering the proposed approach for an actual ap-
plication, one is interested mainly in the FAR vs. FRR at a spe-
cific detection threshold. The Detection Error Tradeoff (DET)
curve in Fig. 1 is the best combined model from the last row of
Tab. 4. For a FAR of around 10%, the system misses about 30%
of the ICSI hotspots and about 45% of the AMI hotspots, which
means that the error rate is still too high for most real-world
applications.

For a more detailed analysis the confusion table Tab. 5 is
presented, which evaluates the recognition rates for the original
labels in the ICSI test set at the detection threshold that mini-
mizes EER. As expected from listening to the files, the ‘luke-
warm’ hotspots, equally classified as ‘no hotspot’ or ‘hotspot’,
are a significant source of errors.

Table 5: Example confusion table for the best ICSI system.

Reference Original label Hotspot Detected [%]
no yes

no hotspot none 81.6 18.4
‘lukewarm’ 49.3 50.7

hotspot ‘warm’ 21.1 78.9
‘hot’ 12.5 87.5

5. Conclusions and Next Steps
We have shown that a cross-corpus approach is effective in de-
tecting emotional hotspots in natural meetings. The results are
surprisingly good, given the high training and test data mis-
match. However, error rates are too high for an actual appli-
cation. For future research, we will finalize the labeling of the
AMI corpus to confirm our findings and publish the labels. We
will start applying methods that increase generalization, e.g.,
ladder networks [15], and plan to include features derived from
an automatic speech recognizer.
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