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Abstract
Speech Emotion Recognition (SER) is an important and chal-
lenging task for human-computer interaction. Human emotions
are complex and nuanced, hence difficult to represent. The
standard representations of emotions, categorical or continuous,
tend to oversimplify the problem. Recently, the label encoding
approach has been proposed, where vectors are used to repre-
sent the emotion space. In this paper, we hypothesise that using
a pre-existing vector space that encodes semantic information
about emotion is beneficial for the task. To this aim, we propose
using word embeddings obtained from a Language Model (LM)
as labels for SER. We evaluate the performance of the proposed
approach on the IEMOCAP corpus and show that it yields better
performance than a standard baseline. We also present a method
to combine free text labels, which are unusable in conventional
approaches, and by doing so we show that the model can learn
more nuanced representations of emotions.
Index Terms: speech emotion recognition, word embeddings,
label encoding, paralinguistics

1. Introduction
Speech Emotion Recognition (SER) uses machine learning
models to classify emotion from audio, which rely on accurate
labels. However, human emotions are highly complex and emo-
tion annotation is a difficult and subjective task [1]. The two
common representations of emotion are categorical and con-
tinuous. The categorical approach uses a small set of discrete
labels (angry, happy, sad, etc.) and relies on majority voting
across a number of annotators to establish one ground truth la-
bel. However, this approach may oversimplify the task as it
overlooks the complexity and natural subjectivity of emotion
perception. Additionally relying on majority voting may ex-
clude relevant information in the form of individual annotations,
as well as data without agreement. The continuous approach
looks to represent emotions in a continuous space, most com-
monly using arousal, valence, and dominance as dimensions.
This has the same problems as the categorical approach, as well
as potentially being more challenging to annotate.

Recently, using categorical labels in the framework of label
encoding has been investigated. In this framework categorical
labels are used to generate a vector, which is then used as a
target for training the model. Two approaches have been pro-
posed for SER: soft labels and metric learning. In the soft labels
approach [2], the vectors are probability distributions computed
from the individual annotations from each annotator. The metric
learning approach [3] proposes to learn the vector space using
a triplet loss function. Both approaches have shown some im-
provements on the SER task and have made first steps towards
a better representation of the emotion space.

In the field of Natural Language Processing (NLP), a ma-
jor area of research is designing representations of words that
encode semantic information as well as the relationships be-
tween them. The most successful representations to this day
are word embeddings, computed by a neural networks-based
Language Model (LM). We hypothesise that word embeddings
could better capture the complexity and multiplicity of emotion
perception as opposed to the categorical labels that result from
the closed-set majority voting approach. These embeddings are
known to capture linear substructures [4], which could be used
to take into account different labels among annotators. Our hy-
pothesis is that this approach could be the key to encoding emo-
tions efficiently and bringing more nuanced emotion informa-
tion to the model.

This paper is an exploratory study aiming to showcase the
potential benefit of using word embeddings as labels for SER.
We present a novel approach where the model is trained to pre-
dict the word embeddings of the emotion labels, as opposed
to the label itself. Using the IEMOCAP corpus [5], different
loss functions are compared along with a baseline using the
same model architecture trained with the standard approach. We
show that the proposed approach yields better performance than
the baseline, and yields performance on par with recent litera-
ture. A major novelty of the proposed approach is its ability
to use any free text labels without mapping, which is impossi-
ble with conventional approaches. Based on this property, we
propose an approach to combine individual annotations from
multiple annotators and free text comments to investigate bring-
ing more nuanced emotion information to the model. We also
present a study on leveraging natural language to analyse the
trained models and show that the models learn more nuanced
emotion representations.

The key contributions of the paper are: (1) we present a
novel approach to use word embeddings as labels for SER and
show its benefits, and (2) we propose a novel approach to com-
bine emotion labels, including free text labels and show its po-
tential to learn better emotion representations.

2. Related Work
In this section we present the related work for word embeddings
and for label encoding approaches for SER. For more details on
other approaches in SER see [6, 7].

Word embeddings are vectors representing words in a space
which preserve syntactic and semantic properties to some ex-
tent, which can then be used in different NLP tasks. Word em-
beddings are often computed using neural networks-based mod-
els [8] and are typically learned within a LM. The most popular
language models are word2vec [4], GloVe [9], BERT [10] and
GPT-3, [11] as used in the popular application ChatGPT.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

2418 10.21437/Interspeech.2023-1591



Word embeddings have recently been used to represent
emotions in the context of speech synthesis. They were origi-
nally introduced in [12] as style tags for the synthesised speech,
and the approach was then extended to use word embeddings
computed from emotion labels [13].

In the context of SER, one recent approach to represent-
ing emotion is metric learning, where a measure of distance is
learned using similarity between classes. Most commonly the
triplet loss function is used, where the distance between an an-
chor, a positive and a negative sample is optimised, which has
been shown to improve SER model performance [3, 14, 15].
Recent work [16] shows further improvements when integrating
an additional sentiment constraint within the triplet loss func-
tion. A denoising autoencoder using a continuous metric loss
based on either activation or valence labels was proposed in [17]
to improve generalisation across languages.

To the same aim, recent approaches have sought to account
for annotations from multiple annotators and model the subjec-
tiveness of the SER task. The most common approach uses soft
labels, which typically converts the traditional one-hot emotion
label attained through majority voting to a probability distri-
bution taking into account the individual annotations. Numer-
ous previous studies have successfully used soft labels on the
task of SER [2, 18, 19, 20]. More recently, [21] leverages the
co-occurrence of emotion labels to create a weighted matrix,
while [22] investigates modeling the uncertainty of emotion la-
bels with Dirichlet priors.

3. Methodology
3.1. Label encoding using word embeddings

In the label encoding approach, the model is trained to predict
vectors corresponding to the label, rather than the label index
y. In this paper, vectors are word embeddings from a dictionary
obtained from a pre-trained LM. This dictionary W has an en-
try for all words in the English language. The vectors w used
for training are obtained by getting the entry of the dictionary
corresponding to the name y: w = W (y).

The model f(·) is trained by minimising the distance be-
tween its output f(x) for input utterance x and the target word
embedding w. The loss functions L(x,w) investigated in this
paper are the Mean Square Error (MSE), Mean Absolute Error
(MAE) and Log Cosh (LC).

LMSE =
1

N

∑

n

(f(xn)− wn)
2 (1)

LMAE =
1

N

∑

n

|f(xn)− wn| (2)

LLC =
1

N

∑

n

log(cosh (f(xn)− wn)) (3)

3.2. Combining encoded labels

Due to the complexity and subjectivity of emotion, it is com-
mon for a given utterance to have more than one label. In an
attempt to represent emotion in a more fine-grained and sub-
tle manner, we use one of the most useful properties of word
embeddings: their ability to capture semantic linear substruc-
tures, which enable simple arithmetical operations. For in-
stance, word2vec [4] reports that W (Rome) = W (Paris) −
W (France) + W (Italy). Taking inspiration from this prin-
ciple, we investigate an approach to combine encoded labels
using vector geometry. The combined word embedding wnew

is computed as the average of the different word embeddings wi

obtained from the different labels yi, i = 1, ..., L:

wnew =
1

L

L∑

i=1

wi =
1

L

L∑

i=1

W (yi). (4)

For instance, if a given utterance has three labels
{anger, sadness, sadness}, the new word embedding
will be on the line between the word embedding for sadness
and the word embedding for anger, at 1/3 of the distance from
sadness and 2/3 from anger.

3.3. Evaluation

In order to evaluate the output of the models trained on word
embeddings, a metric measuring the distance between embed-
dings is first needed. Following GloVe [9], we use the cosine
similarity defined as the cosine of the angle between two em-
beddings.

In the SER literature, two metrics are commonly used: the
Weighted Accuracy (WA), and the Unweighted Accuracy (UA),
which is the average of the per-class accuracies. To compute
these metrics with the proposed models using word embed-
dings, their output needs to be mapped to the index labels. The
prediction ŷ is therefore computed by finding the closest em-
bedding to the output w from the embedding dictionary WY

using the cosine similarity scos.

ŷ = argmin
i

scos(w,WY (i)), (5)

where WY is a subset of the word embedding dictionary W
containing only entries corresponding to the label set (for ex-
ample: {anger, happiness, neutral, sadness}).

4. Experimental Setup
4.1. Database

IEMOCAP is an audio-visual corpus totalling 12 hours of data
from 10 speakers [5]. Each utterance was labeled by three an-
notators choosing from a discrete set of categorical emotion la-
bels. Annotators were permitted to use one or more labels per
utterance and could leave free text comments if they felt none
of the labels were adequate. For the purpose of this study and in
line with previous works [23], majority voting is used and only
utterances with anger, excitement, happiness, sadness, and neu-
tral ground truth labels are used, with excitement merged with
happiness.

4.2. Encoded label sets

The following three label sets are used to train the models using
word embeddings. All sets use the same audio data, which is
selected as described in section 4.1. We use the noun form of
all emotion labels.
• Baseline set S1 is created by extracting the word embeddings

from the ground truth labels. We refer to this as the 4-label
set.

• Annotator set S2 is created by extracting the individual an-
notations from multiple annotators and combining them as
presented in Section 3.2, leading to 129 different embeddings
targets. This means that labels outside of the four label set
are included, for example frustration. The other label is dis-
carded as its meaning is unclear and could confuse the model.
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• Comment set S3 is created by extracting the comments pro-
vided by the annotators as well as the individual annotations
as in S2. We split the comments on commas, discarding any
comments longer than one word as well as those containing
misspellings. The comments and the labels are combined in
the same way as in S2, leading to 629 different embedding
targets.

4.3. Model and training details

The architecture of the model is based on [24] and its hyper-
parameters are shown in Figure 1. Following the latest find-
ings in SER [25], we use the learned representation from a pre-
trained wav2vec2.0 model [26] as input features, more precisely
the representation from the 14th layer. The wav2vec model,
pre-trained on the Librispeech corpus, is obtained from hug-
gingface1.

We train three models using word embeddings on the three
label sets presented above: M1 on S1, M2 on S2 and M3 on S3.
The models are trained using 5-fold cross-validation, where for
each fold one session from the corpus is considered as the test
set and the rest is designated randomly to either train (80%)
or validation (20%), as is usually done in the literature [23].
The models are trained for 100 epochs with a learning rate of
2×10−3 for the model using word embeddings and 2×10−4 for
the baseline, using early stopping and the one cycle sched-
uler [27] provided by pytorch [28]. As a baseline we train the
model using categorical labels and the cross entropy loss func-
tion.

We evaluate three commonly used and readily available
word embeddings: word2vec [4], GloVe [9] and BERT [10].
As we found no significant differences between them for our ap-
proach, we select the best performing: GloVe2 which contains
2.2M entries. For the ease of reproducibility, no processing was
done on the embedding space.

CNN-MP
1D Convolution

ReLU
Max-Pooling

CNN 1D Convolution
ReLU

BLSTM LSTM→
← LSTM

MoT Mean over Time

FC
Fully-connected

ReLU
Dropout

O Fully-connected

(a) Network modules

CNN-MP hu=96, kw=15

CNN-MP hu=256, kw=5

CNN hu=256, kw=3

BLSTM hu=64, do=0.5

BLSTM hu=64, do=0.5

MoT

FC hu=1024, do=0.5

FC hu=1024, do=0.5

O

(b) Model

Figure 1: Model architecture. ‘hu’ refers to the number of hid-
den units, ‘kw’ is the kernel width and ‘do’ is the dropout rate.

5. Results
5.1. Recognition studies

5.1.1. Evaluation on the 4-label set

In this study, the outputs of the three models are mapped to
the 4-label set as described in Section 3.3. We compare them

1https://huggingface.co/facebook/
wav2vec2-large-960h-lv60-self

2https://nlp.stanford.edu/projects/glove/

with the baseline and related work. Table 1 presents the results
of the models using word embeddings, trained with the three
losses presented in Section 3.1, along with the baseline. All
three models outperform the baseline, showing the benefits of
using word embeddings as labels. The M1 model yields the best
performance, which is expected as it is the only model trained
exclusively on the 4-label set. The performance gap of M2 and
M3 compared to M1 is very small, which shows another benefit
of the proposed approach as training models on hundreds of
different labels tends to be challenging when using categorical
labels. The three loss functions yield similar performances: the
LC function being slightly better for M1 and the MSE loss for
M2 and M3. For fair comparison across all three models, going
forward, we use the same loss function. We select the LC as it
yields the highest singular performance.

Table 1: Model accuracies on the 4-label set

Baseline: 61.45% UA, 57.70% WA

MSE MAE LC
Model UA WA UA WA UA WA

M1 67.91 66.61 68.78 67.68 69.68 68.47
M2 68.26 66.37 66.63 65.06 65.48 62.24
M3 67.33 66.14 65.37 63.93 65.89 62.35

As seen in Table 2, M1 yields performance on par with re-
cent work but not reaching state-of-the-art. This is expected
as this work is an exploratory study and did not include an ex-
tensive hyper-parameter search or fine-tuning of the wav2vec
features.

Table 2: Comparison with recent work

Approach UA [%] WA [%]

EPATA-TDNN w/ fbank [23] 57.60 56.52
Self-attention w/ IS09 [29] 63.80 68.10
Word embeddings (this paper) 69.68 68.47
Co-attention w/ MFCC+wav2vec [30] 71.05 69.80
EPATA-TDNN w/ wav2vec (FT) [23] 77.07 76.58

5.1.2. Evaluation on combined labels

In order to further evaluate all three models, we compute the
average cosine similarity between the predicted and target em-
beddings for the three label sets. The results are presented in
Table 3. M2 and M3, trained on combined labels, have a higher
similarity on S2 and S3, showing that the models have learned a
more fine-grained representation of the word embedding space.
Contrary to expectation, the best model on S2 is not M2 but
M3, which shows that adding the comments is beneficial. This
highlights one of the key benefits of our approach, as free text
comments are very difficult to use in standard approaches and
so are typically discarded.

Table 3: Average cosine similarity across the label sets

Model S1 S2 S3

M1 0.789 0.764 0.759
M2 0.756 0.834 0.831
M3 0.756 0.841 0.839
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Table 4: Top 5 nearest neighbours of the target labels. Those in bold match an emotion from the target label.

Set Label 1st 2nd 3rd 4th 5th

S1 happiness happiness joy contentment bliss prosperity
S2 excitement, happiness, happiness, happiness, happiness joy contentment excitement bliss
S3 amazed, enthusiastic, happiness, happiness, happiness, impressed happiness joy enthusiasm gratitude happy
S3 bantering, excitement, happiness, happiness, joking happiness laughter joy excitement contentment

5.2. Exploratory studies using natural language

One of the major appeals of the proposed approach is that the
word embedding space not only contains the target labels but
the entire vocabulary from the word embedding dictionary. In
this section, we use natural language to further assess our hy-
pothesis that the combined label sets can enable the models
to learn more nuanced and subtle representations of emotion.
More specifically, we use nearest neighbours in both qualitative
and quantitative analysis.

5.2.1. Qualitative analysis

To illustrate the benefit of using a semantic space for label en-
coding, we look at the closest embeddings to the target embed-
ding. Table 4 presents the 5 nearest neighbours to a small num-
ber of example labels from S1, S2 and S3. The combined sets,
S2 and S3, encapsulate the meanings from multiple labels and
better model entangled emotions. To evaluate if the models are
able to capture this, we perform the same analysis of finding the
closest embedding, but on the predicted embeddings. Table 5
presents the top 5 nearest neighbours to the predicted embed-
dings for each of the four emotion labels in S1. First, this shows
that the model is able to learn the word embedding space. On
closer inspection, we can see that the nearest neighbours vary
across the three models, for example, the neighbours of neutral
in M1 are more syntactically related while in M2 and M3 they
are more semantically related. Also of note, is that sadness is
a neighbour to happiness in M1, and not in M2 and M3. This
suggests that the models trained on the combined sets capture a
more informed representation.

Table 5: Top 5 nearest neighbours of the predictions

Model Emotion label
anger neutral happiness sadness

M1 anger neutral happiness sadness
frustration neutrals joy despair
resentment nuetral sadness sorrow

grief Neutral contentment grief
rage zone feelings loneliness

M2 frustration neutral joy sadness
anger sense excitement despair

resentment feelings happiness sorrow
fear frustration enthusiasm grief
rage feeling feelings feelings

M3 frustration neutral excitement sadness
anger sense joy despair

resentment feelings happiness sorrow
fear feeling enthusiasm grief
rage muted feelings feelings

5.2.2. Quantitative analysis

This experiment uses the top-10 accuracy, which measures the
accuracy of a given word being present in the 10 nearest neigh-
bours. We define l1 and l2 as the most and second most frequent
emotion label within the combined label respectively. We com-
pute the top-10 accuracy of l1 and l2 for each prediction on S2

and S3 across the three models. The results are presented in
Table 6. The top-10 accuracy on l1 shows that training on the
combined labels does not hurt the ability of the model to pre-
dict the majority label, conversely the accuracy improves for
M2 and M3. Additionally, the top-10 accuracy on l2 is higher
for M2 and M3, which shows that this approach helps the mod-
els predict a secondary label. This indicates that M2 and M3

are able to better capture the nuance of emotions. Overall, these
two findings indicate that the predictions from M2 and M3 are
better situated in the word embedding space, showing the bene-
fit of the combined label approach.

Table 6: Top-10 accuracy for l1 and l2 on S2 and S3

S2 S3

Model l1 l2 l1 l2

M1 59.58 31.93 59.40 28.17
M2 71.34 51.35 71.23 45.24
M3 72.32 50.22 72.23 42.45

6. Conclusion
In this paper we presented an exploratory study using word em-
beddings as labels for speech emotion recognition. This in-
cluded a novel approach to combine multiple emotion labels,
including free text comments. We showed that the proposed
approach yields better performance than the standard approach
using the same model architecture, highlighting the benefit of
using a label encoding space which already encodes seman-
tic relations between emotions. Additionally, we presented a
study using natural language, which indicates that the model
trained on the combined label sets learned a more informed and
nuanced representation of emotion, and that the proposed ap-
proach can leverage semantic relationships between emotions.
These are novel insights which could pave the way for new
developments towards improving SER models and their inter-
pretability. For future work, we will investigate applying this
approach to cross-corpus training as it could address one of its
main issues: the mismatch between label sets. We will also
investigate filtering the word embedding space.

In terms of limitations, the approach is restricted by both
the data and word embeddings, which are readily available in
English, but are less available for a wider range of languages.
Additionally, using word embeddings as label encodings intro-
duces new biases to the SER task, which otherwise would not
exist, as language models are known to manifest potentially
harmful social biases [31].
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