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Abstract

Abusive content in online social networks is a well-known prob-
lem that can cause serious psychological harm and incite hatred.
The ability to upload audio data increases the importance of de-
veloping methods to detect abusive content in speech recordings.
However, simply transferring the mechanisms from written abuse
detection would ignore relevant information such as emotion and
tone. In addition, many current algorithms require training in
the specific language for which they are being used. This paper
proposes to use acoustic and prosodic features to classify abusive
content. We used the ADIMA data set, which contains record-
ings from ten Indic languages, and trained different models in
multilingual and cross-lingual settings. Our results show that
it is possible to classify abusive and non-abusive content using
only acoustic and prosodic features. The most important and
influential features are discussed.

Index Terms: abusive content, computational paralinguistics,
speech prosody

1. Introduction

With the rise of the internet and the establishment of more and
more online social networking platforms, the amount of abusive
content is rapidly increasing. The fact that almost every online
social network provides information on how to prevent bullying,
how to deal with abusive behaviour, and even statistics on the
prevalence of harassment on its website underlines the growing
importance of this issue. According to Kaur et al. [1, p. 274],
abusive behaviour “describes a broad category of content that
includes hate speech, profanity, threats, cyberbully and various
ethnic and racial slurs”. It is often conveyed through rhetorical
devices such as aggressive language, threats, obscenity, and
sarcasm [2].

In addition to hindering social interaction and fomenting
hatred, research has shown that victims of cyberbullying “have
psychosomatic problems ..., have high levels of perceived dif-
ficulties, have emotional and peer problems, and feel unsafe
at school and uncared about by teachers” [3, p. 727]. These
findings increase the need to identify abusive content in online
social networks. However, Matamoros-Fernandez and Farkas
[4] found out that, to date, much of the research in this area has
focused on the English language and on detecting hate speech in
texts or memes. Their paper shows that most studies have been
conducted in North America (44%) and the United Kingdom
(11%) and have used data from Twitter (55%) and Facebook
(35%). This imbalance likely exists because the majority of data
sets come from these platforms.

As almost all social networking platforms now allow the
upload of video and audio files, online communication and in-
teractions are no longer limited to written content. In recent

years, several efforts have therefore been made to classify abu-
sive speech in audio recordings. Different approaches have been
used for feature extraction and classification. For example, Wu
and Bhandary [5] used a speech-to-text converter and sentiment
analysis to obtain the polarity of spoken utterances in audio
recordings extracted from YouTube videos, Ghosh et al. [6],
who created DeToxy, one of the few available data sets of abu-
sive audio recordings, used automatic speech recognition (ASR)
for their baseline estimation, and Ablaza et al. [7] used keyword
spotting to suppress predefined profane words.

While some information about abusive content in audio
data can be retrieved using ASR and textual search or keyword
spotting, this ignores the information provided by emotional and
acoustic cues [8]. These cues can be important, for example for
phrases that may or may not be considered abusive depending
on the tone and context. For this reason, the change of modality
triggers the need for recognition methods that are specifically
designed for audio and video data [1, 9, 10, 11].

Sharon et al. [12] combined the features extracted by ASR
with contextual and emotional representation features. While
they achieved F1 scores between 0.77 and 0.85 for the different
languages in the ADIMA data set, the features they used con-
tained only spectral and temporal information, and not prosodic
or voice quality features, which have been shown to correlate
with abusive speech. For example, Novitasari et al. [13] and
Sutejo and Lestari [14] found that it is possible to detect rude
words using only acoustic features. Although the performance
of their textual model was better, this could be because they used
acted data instead of real-life recordings, where the text was
explicitly designed to be abusive. Furthermore, their findings
might be relativised if the conversion of audio to text is com-
plicated, resulting in less accurate textual representations. This
may be the case, among other things, due to slurred speech and
poor audio quality, such as background noise [8].

A popular method for obtaining acoustic features is using
spectrogram images of the audio recordings. So far, this has been
done mainly for Indic languages, once by Rahut et al. [15], who
tried to distinguish between abusive and non-abusive content
in Bengali speech recordings, and then by Gupta et al. [16] for
baseline calculations on their newly introduced ADIMA data set,
which contains abusive and non-abusive audio recordings for ten
different Indic languages. Gupta et al. [16] additionally used
Wav2Vec2 models for speech recognition. Both papers applied
a variety of classification methods and achieved good overall
results. In addition, Gupta et al. [16] found that performance
in some languages was higher when the model was trained in
another language. In particular, training in all languages im-
proved performance in most single languages. If this could be
generalised to other languages, it would be a major advantage for
abusive content classification in audio data. However, while they
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hypothesise that “models are able to leverage audio properties
like pitch, emotions, intensity etc. for this task instead of relying
on the actual word” [16, p. 6175], this could also be because the
Wav2Vec2 models they used for speech recognition were pre-
trained on the target languages. Therefore, as seen in [17], these
are not true zero-shot trials and further investigation is needed,
as large pre-trained models can exploit linguistic information,
which may partially explain their higher performance.

This paper investigates how paralinguistic features alone,
i.e., acoustic and prosodic properties, perform for the detection
of abusive content in real-life data. This is particularly interesting
because real-life recordings usually contain a lot of information
about the speaker’s emotional state that is not captured by the
text. We also look at their performance in multilingual and
cross-lingual settings, as non-textual features could provide an
easy way to perform abusive content detection in less common
languages for which no audio data sets are available.

The remainder of this paper is organised as follows: Sec-
tion 2 describes the methodology used to distinguish which
features differ significantly between abusive and non-abusive
content, and how the classification was performed. Section 3
shows the results, which are followed by the discussion in Sec-
tion 4 and the conclusion in Section 5.

2. Methodology

The ADIMA data set [16] was used for this study. This data set
consists of 11,775 audio recordings, evenly distributed across ten
different Indic languages (Bengali, Bhojpuri, Gujarati, Haryanvi,
Hindi, Kannada, Malayalam, Odia, Punjabi, and Tamil), and
taken from real-life conversations in ShareChat chatrooms. The
authors defined the content as abusive if swear words, cuss words,
or abusive words/phrases were present, resulting in 5,108 abusive
and 6,667 non-abusive recordings. The average duration of the
recordings is 20 (£ 3) seconds with a minimum of 5 seconds
and a maximum of 58 seconds. For each language, the authors
split the data set into a training and a test set (70:30).

The acoustic and prosodic features of each audio recording
were extracted using the OPENSMILE-v2.4.1 toolkit [18]. Two
different feature sets were extracted: 1. The extended Geneva
Minimalistic Acoustic Parameter Set (EGEMAPS) [19]. This
parameter set consists of 88 acoustic signal descriptors includ-
ing 18 low-level descriptors (e. g., pitch, jitter, formants, shim-
mer, loudness) to which different functionals were applied (e. g.,
arithmetic mean, standard deviation, percentiles), 6 temporal
features (e. g., mean length of voiced and unvoiced regions), and
7 cepstral parameters (e. g., MFCC, spectral flux); 2. The Com-
putational Paralinguistics Challenge (COMPARE_2016) [20]
parameter set, which contains 6,373 features.

In the first step, the performances of four different classifiers
— Logistic Regression (LR), eXtreme Gradient Boosting (XG-
Boost), Support Vector Machine (SVM), and Random Forest
(RF) — on the two feature sets were measured. For each feature
set and each of these classifiers, 21 different models were trained.
The first ten models were trained on one language only and then
tested on each of the ten languages separately (single condition).
These models were also tested on a combined test set containing
all languages except the one on which the model was trained
(multi-test condition). The next ten models were trained on all
languages except one and then tested on the remaining language
(multi-train condition). The last model was trained and tested
on all languages (all condition). This process was repeated five
times and the mean performances were used for evaluation.

Further hyperparameter optimisation did not yield any ad-
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ditional performance gains. Therefore, we only report results
for the default parameters (e.g., for RF: n_estimators = 100,
max_depth = None, min_samples_split = 2). For LR, SVM, and
RF we used SKLEARN-V1.2.0 and for XGBoost XGBOOST-
v1.7.3 in PYTHON-V3.10.06.

Model performance was determined using the unweighted
average recall (UAR) score, which compensates for imbalances
in the sample class ratio by summing up the recall of all classes
and dividing this by the number of classes, and the F1 score.
The means of the multi-test and multi-train models were used
to compare the classifiers. The best-performing feature set and
classifier were selected for subsequent analysis.

These subsequent analyses included examining the most
influential parameters for the model performance using SHapley
Additive exPlanations (SHAP). In addition, Mann-Whitney U
(MWU) tests were used to examine differences in the value dis-
tributions between abusive and non-abusive recordings for each
feature in each language. A difference was called meaningful if
two conditions were met: 1. The MWU test result had to be sig-
nificant using an alpha level of 0.05 and correcting for multiple
testing within the language using the Bonferroni-Holm method;
2. The Common-Language Effect Size (CLES), which indicates
“the probability that a score sampled at random from the first
population will be greater than a score sampled at random from
the second” [21, p. 101], had to be greater than 67.2%, which
corresponds to a medium effect size. If a feature was meaningful
in every language, it was considered important for the differenti-
ation between abusive and non-abusive audio recordings. The
findings from the MWU tests were compared with the SHAP re-
sults. The comparison as well as the interpretation of the results
can be found in Section 4.

3. Results

The mean of the UAR and F1 scores for the two feature sets and
four classifiers can be found in Table 1. In general, it can be said
that the classifiers performed similarly well on the EGEMAPS
feature set and on the COMPARE_2016 feature set. Due to its
size advantage, it was decided to use the EGEMAPS feature set
for all subsequent analyses in this paper. As for the classifiers,
all models seem to perform comparably well in the multi-train
condition, while in the multi-test condition, the RF classifier
performed slightly better than the others. For this reason, the RF
classifier was used to determine all other results. The result for
the all condition can also be found in Table 1, while all other
results for the RF classifier, including multilingual and cross-
lingual settings, can be found in Fig. 1. To investigate which
features are most influential in the classification a SHAP graph
was created using a model trained on all languages (see Fig. 2).

Between 19 and 25 features were found to be meaningful
in each language as a result of the MWU tests. A total of 18
features were considered important, i. e., meaningful for all ten
languages — Loudness (), Loudness (50%), Loudness (80%),
Loudness (pctl Range 0-2), Rising Slope Loudness (u), Rising
Slope Loudness (o), Falling Slope Loudness (), Falling Slope
Loudness (o), F1 Amplitude (1), F2 Amplitude (1), F3 Ampli-
tude (w), Flux (), Flux V (@), Flux UV (@), Loudness (Peaks
Per Sec), Voiced Segments Per Second, Voiced Segment Length
Per Sec (i), Erms. Since many of these are highly correlated,
only a selection of the results is shown. Table 2 contains the
mean, median, and the 1°¢ and 3¢ quartiles for these features,
calculated on the whole data set and split by the label. It also
shows the mean of the CLES for the MWU tests across all lan-
guages.
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Figure 1: Heatmap of UAR scores for the RF classifier trained on each of the ten languages in the ADIMA data set using the EGEMAPS
features. The rows indicate the training language, while the columns indicate the test language. The top row shows the performance
when training on all languages except the test language; the rightmost column shows the performance when testing on all languages

except the training language.

Table 1: For both feature sets, the means of the UAR and F1
scores are shown for all classifiers using the models trained on
all but one language and tested on the last (multi-train condition)
and the models trained on one language and tested on all others
(multi-test condition). In addition, the score for training and
testing on all languages (all condition) is shown for the RF
classifier.

EGEMAPS CoOMPARE
Classifier Condition  UAR F1 UAR F1
LR multi-train ~ 0.77 0.72  0.68 0.63
LR multi-test 074 0.67 0.72 0.66
XGBoost  multi-train ~ 0.76 0.72  0.77 0.74
XGBoost  multi-test 0.75 0.67 0.75 0.68
SVM multi-train ~ 0.77 0.73  0.67 0.62
SVM multi-test 074 0.67 071 0.65
RF multi-train 0.77 0.73 0.77 0.73
RF multi-test 0.76  0.68 0.76  0.68
RF all 079 0.76 0.80 0.76

4. Discussion

In this paper, we tried to investigate whether paralinguistic, i. e.,
acoustic and prosodic, features alone can be used to detect abu-
sive content in real-life audio recordings. We also wanted to find
out how these features perform in real multilingual and cross-
lingual settings. The results show that it is indeed possible to
use paralinguistic features to classify abusive and non-abusive
content. For the RF classifier, the achieved UAR values were
between 0.70 and 0.84 for multilingual settings and between 0.66
and 0.84 for cross-lingual settings. These results are comparable
to those of related studies.

Comparing the EGEMAPS and COMPARE _2016 feature
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sets, the results indicate that the EGEMAPS feature set per-
forms comparably well when used for abusive content detection
in audio data. In addition, it has the advantage of better inter-
pretability and shorter run time due to its smaller size. Regarding
the classifiers, the RF classifier performs best on the given data
set and using the extracted paralinguistic features. This finding
is consistent with a study by Ibafiez ef al. [22], which attempted
to detect hate speech in audio data, and in contrast to a study
by Soni and Singh [23], which found that LR performed best
in detecting cyberbullying in audio and visual data. One expla-
nation is the difference in the used features, as RF can model
non-linear dependencies, unlike LR. Another problem may be
that the features in the EGEMAPS feature set are highly cor-
related, which is a problem in LR and can lead to unreliable
coefficient estimates.

As shown in Fig. 1, the multilingual models performed best
when tested on Odia, Haryanvi, and Punjabi and worst on Bho-
jpuri. This was also true for most cross-lingual models. These
results were present in all classifiers and can be found similarly
in [16]. Sharon et al. [12], on the other hand, obtained different
results, with Bhojpuri performing very well and Odia performing
worst. This difference may be due to the different properties of
the languages, as Ozseven [24] shows that there are differences
in the predictive properties between different languages.

The results of the MWU tests and the most influential fea-
tures of the model, as seen in the SHAP graph, show distinct
similarities. Both indicate that the most important features in de-
termining whether a recording is abusive or non-abusive are the
mean amplitudes of F1, F2, and F3, the loudness features, and
the mean spectral flux — with higher values indicating abusive
language. This is reminiscent of results from the anger literature,
which found higher mean volume, higher volume range, and
higher energy density [25], as well as higher F1, F2, and F3 [24,
26, 27], as significant predictors. In addition, the SHAP plot
suggests that abusive content is associated with lower standard



Table 2: Selection of features, that differed significantly between abusive and non-abusive content in all languages according to MWU

test (Bonferroni-Holms corrected p-value <0.05 and CLES >67.2%), with respective means, 1°" quartile,

quartile, and mean CLES.

2" quartile (median), 3"

non-abusive abusive
Features M @1 Median Q3 M @1 Median @3 CLES
Loudness (1) 0.41 0.07 0.23 0.54 1.37 0.50 1.00 2.03 0.82
F1 Amplitude (1) -161.61 -19320 -168.86 -139.51 -109.48 -141.90 -110.56 -76.12 0.82
F2 Amplitude () -157.40  -19091 -163.91 -133.59 -103.73 -136.40 -103.50 -69.98 0.82
F3 Amplitude (1) -158.50 -190.81 -164.67 -135.82 -106.34 -138.47 -105.90 -73.20 0.82
Flux (p) 0.25 0.02 0.12 0.31 0.94 0.28 0.63 1.41 0.82
Voiced Segments per Second 1.16 0.40 1.00 1.72 2.13 1.37 2.08 2.80 0.76
High One problem with the current study that needs to be ad-
F1 Amplitude (1) — <mm—etigiesgs » dressed is the lack of age and sex information in the data set.
LU Peaks / Sec = e Therefore, it is not possible to determine whether the data set is
F2 Amplitude (1) P balanced with respect to these attributes. Since acoustic features
pet] Range 0-2 LU o e typically change with age and also differ between males and fe-
males, this could explain some differences in features, especially
F3 Amplitude (u) wb" in pitch and vowel formant frequency, which are typically lower
Fl A1“1‘11‘[“( (o) — for males, and voice onset time. In addition, Mohanta and Mittal
( 1) I aummi [27] showed that the anger distinguishing features differ between
( 80%) e - é‘ males (pitch as the main predictor) and females (F1, F2, and F3
Falling Slopn LU (u) it ;’: as main predictors).
F3 Amph‘m( (o) - E .
U (50%) N — 3 5. Conclusions
F2 —\mph‘m( e (o) - The need to identify abusive content in audio and video data is
UV Seg. Length (u) ——nl growing rapidly. This study shows that paralinguistic features,
Flux (1) o i.e., acoustic and prosodic properties, can be successfully used
Flux (o) 5 — to classi.fy real-life audio .recordings depepding on the presence
Flux V (o) BN L of abusive and non-abusive content. Using the features from
- EGEMAPS, we were able to achieve UAR scores between 0.66
Rising Slope LU () a and 0.84 for cross-lingual settings. The multilingual perfor-
Falling Slope LU (o) e mance is particularly interesting, showing that a model trained
Low on all languages except one still performs well on the excluded

—0.05 0.00  0.05

SHAP value

0.10

Figure 2: SHAP graph for the RF classifier trained on all ten
languages in the ADIMA data set using the EGEMAPS features.
The values indicate the influence of the features on the model.
Note: LU = Loudness

deviation in F1, F2, and F3 amplitudes. In contrast to other
studies, we did not find a difference in pitch [24, 28]. This is
consistent with preliminary evidence for lower or absent pitch
variation in (acted) emotional speech in Indian languages [29,
30]; as research in these languages is still in its infancy [31]
though, these findings should be revisited.

In general, the features found to be most influential in our
study seem to be mostly related to angry speech. Other mech-
anisms used to convey abusive content, such as sarcasm and
irony [2], are either not covered in the ADIMA data set or are
not captured by our features. This alternative form of abusive
speech may be more difficult to detect using prosody alone [32].
In addition, Dogdu et al. [33] have shown that EGEMAPS has
a tendency to lead to confusion of happiness and anger cate-
gories in different classifiers, which may be due to the similarity
in arousal between these two categories [34]. This raises the
question of whether our classifiers also capture arousal.
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language.

The most influential features in our model were the mean
loudness, mean F1, F2, and F3 amplitude, mean flux, and mean
voiced segments per second. These results suggest that angry
speech played a critical role in detecting abusive content. Future
research should further investigate how to detect other mecha-
nisms such as sarcasm and irony.

Breaking Down Barriers: Concerning this year’s confer-
ence theme, we believe the detection of abusive speech to be a
highly relevant problem in the current internet and social me-
dia era. Moreover, ADIMA is a multi-lingual data set from a
non-English domain and thus contributes to inclusive research
in speech science by targeting a diverse audience. However, it
does not readily contain metadata such as age and sex; we were,
therefore, unable to evaluate the (intersectional) generalisation
of our methods with respect to these variables.
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