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Abstract
In this paper, we present ZeroPrompt (Figure 1-(a)) and the cor-
responding Prompt-and-Refine strategy (Figure 3), two simple
but effective training-free methods to decrease the Token Dis-
play Time (TDT) of streaming ASR models without any accu-
racy loss. The core idea of ZeroPrompt is to append zeroed con-
tent to each chunk during inference, which acts like a prompt to
encourage the model to predict future tokens even before they
were spoken. We argue that streaming acoustic encoders nat-
urally have the modeling ability of Masked Language Models
and our experiments demonstrate that ZeroPrompt is engineer-
ing cheap and can be applied to streaming acoustic encoders on
any dataset without any accuracy loss. Specifically, compared
with our baseline models, we achieve 350 ∼ 700ms reduction
on First Token Display Time (TDT-F) and 100 ∼ 400ms re-
duction on Last Token Display Time (TDT-L), with theoreti-
cally and experimentally equal WER on both Aishell-1 and Lib-
rispeech datasets.
Index Terms: end-to-end speech recognition, streaming ASR

1. Introduction
In the past few years, end-to-end models, such as connection-
ist temporal classification (CTC) [1], RNN-Transducer (RNN-
T) [2], and attention-based encoder-decoder (AED) [3] models,
have achieved significant success on various ASR tasks. Re-
cently, there has been a growing interest in developing end-
to-end ASR models with streaming capability. Among them,
chunk-based acoustic encoders [4, 5, 6] have gained popularity
and have been adopted in many previous works. These methods
utilize bi-directional recurrent networks [7] or fully-connected
self-attention networks [8] within a chunk. In this work, we pri-
marily focus on chunk-based methods due to their full-context
utilization in a chunk.
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Figure 1: (a) Illustration of ZeroPrompt. (b) To keep the predic-
tion of the current chunk not affected by zeroed future frames,
we use a chunk-level autoregressive attention mask. (c) A sym-
metrical perspective on Masked LM.

In streaming scenarios such as real-time subtitles, ASR sys-
tems need to decode speech with low latency, producing words
as soon as possible [9]. A straightforward way to reduce latency
is directly decreasing chunk size (i.e., from 640ms to 320ms).

However, there is often a trade-off between performance and
latency and lower chunk size usually leads to higher WER. An-
other way to reduce latency is to apply regularization either on
loss function [10, 11] or input spectrogram [12] to push forward
the emission of tokens. While being successful in terms of re-
ducing the token emission latency of streaming ASR models,
the definition of token emission latency (i.e., The timestamp or
frame index when the model predicts the token) underestimates
the true user-perceived latency (such as Token Display Time) in
chunk-based models, since they do not account for chunk cumu-
lative time (a.k.a, the time to wait before the input signal forms
a chunk). Here, we further provide an example to explain why
token emission latency does not correlate well with our notion
of user-perceived latency. In Figure 2, assume the second char
of the recognition result happens at 1000ms and is pushed for-
ward to 800ms after training with emission regularization, the
model still needs to wait until 1200ms to form a valid chunk and
hence start to decode and emit the second char.

To better measure the latency terms that accurately capture
the user-perceived latency, we propose two metrics as illustrated
in Figure 2: First Token Display Time (TDT-F) and Last To-
ken Display Time (TDT-L) - the minimum chunk cumulative
time required to output the first or last character. In real-time
subtitle scenarios, those metrics can be used to evaluate the ini-
tial on-screen time of the first and last characters. For simplic-
ity, we ignore the chunk computation time because it is usually
much smaller than the chunk cumulative time, i.e., inference
one chunk with 640ms chunk size usually takes only 50ms on a
desktop CPU using single thread.

In this paper, we explore a training-free method, called
ZeroPrompt, which appends zeroed content to each chunk to
prompt the model to predict future tokens through its zero-shot
ability of Masked LMs that has been implicitly learned during
training. We argue that previous works mainly focus on the de-
coder part of encoder-decoder E2E ASR structure rather than
the encoder part to estimate the internal LM because the en-
coder part is usually optimized with CTC loss and CTC is gen-
erally not considered capable of modeling context between out-
put tokens due to conditional independence assumption [15].
However, CTC-optimized ASR encoders learn the training data
distribution and are affected by the frequency of words in the
training data. The CTC-optimized encoder therefore at least
has the modeling ability of a unigram LM to do something like
MaskPredict (see Figure 1-(a) and Figure 1-(c) for a clearer
comparison between ZeroPrompt and MaskPredict [16]), and
this paper aims to adopt this zero-shot ability to predict fu-
ture tokens even before they were spoken and hence greatly re-
duce the TDT-F & TDT-L during inference. Besides, to ensure
that the final decoding result is not affected, we propose to use
a chunk-level autoregressive attention mask described in Fig-
ure 1-(b), coupled with a revision strategy called Prompt-and-
Refine, to iteratively predict future tokens and refine them when
the real future chunk arrives (see Figure 3 for a detailed exam-
ple). Experimental results in Section 3 show that our methods
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Figure 2: Illustration of timeline and latency metrics of a streaming ASR system. From top to bottom: (a) Streaming ASR timestamps.
(b) Waveforms. (c) Causal method, 600ms chunk size without right context. (d) LookAhead methods [13, 14], 600ms chunk size with
600ms real right context (dotted line in black, a.k.a. LookAhead chunk). (e) ZeroPrompt method, 600ms chunk size with 600ms zeroed
context (dash-dotted line in grey, a.k.a ZeroPrompt chunk), the black tokens mean predictions from the current chunk while grey tokens
mean predictions from ZeroPrompt chunk.
have many advantages which can be summarized as:
• ZeroPrompt does not require any model re-training and it

takes nearly zero engineering cost to plugin any chunk-based
streaming decoding procedure.

• ZeroPrompt can not only decrease the TDT-F & TDT-L for
partial recognition results but also keep the WER unaffected
for final recoginition results. In other words, we achieve the
theoretically and experimentally best trade-off between la-
tency and WER.

2. Proposed Methods & Related Works
As shown in Figure 1-(a), during inference, we process the ut-
terance chunk-by-chunk, and append a certain number of ze-
roed future frames (called ZeroPrompt chunk) to each chunk.
The history cache, current chunk, and ZeroPrompt chunk are
together fed to the acoustic encoder to produce the prediction
for both the current chunk (“Hello”) and the ZeroPrompt chunk
(“WeNet”). Figure 1-(c) reveals that streaming acoustic en-
coders are zero-shot Masked Language Models (Masked LMs)
and hence the ability of ZeroPrompt is something like MaskPre-
dict used in standard Masked LMs.

This paper is related to LookAhead methods which use ei-
ther real [13, 14, 17] or fake [18] future frames. In previous
work [13, 14], using the real right context requires waiting for
the arrival of future content, which results in additional latency
(Figure 2-(d)). Another study [17] proposed a 2-pass strategy to
process the current chunk first and revise it later once the future
chunk is received, but its TDT-F & TDT-L are identical to our
baseline causal method (Figure 2-(c)) when compared within
equal chunk size.

To avoid waiting for future context, CUSIDE [18] pro-
posed an extra simulation encoder that is jointly trained with the
ASR model and optimized with a self-supervised loss called au-
toregressive predictive coding (APC) [19] to simulate a certain
number of future frames for every chunk. While both CUSIDE
and ZeroPrompt generate fake future information to avoid wait-
ing time, they differ in how they utilize the generated futures.
Specifically, ZeroPrompt directly concatenates the decoding re-
sults from the current chunk (black tokens in Figure 2-(e)) and
ZeroPrompt chunk (grey tokens in Figure 2-(e)), whereas CU-
SIDE only uses the result from the current chunk (black tokens

in Figure 2-(d)) as decoding output, and the simulated future
is only used to enhance the recognition accuracy of the current
chunk. Due to the different usage of the fake future content,
the TDT-F & TDT-L of CUSIDE are still identical to our causal
baseline under equal chunk size. Moreover, ZeroPrompt uses
much simpler zero padding to get fake futures, so it does not
require any extra parameters or model re-training compared to
CUSIDE. Thanks to the internal ability of the Masked LM that
is implicitly learned by the streaming encoder during training,
ZeroPrompt can emit certain tokens even if the input is all zero.

(a) 600ms arrival

(b) 1200ms arrival

(c) 1800ms arrival

(d) 2400ms arrival

(e) 3000ms arrival

(f) 3600ms arrival

      Causal   : “”
LookAhead  : “”
ZeroPrompt : “剩”

      Causal   : “甚至”
LookAhead  : “”
ZeroPrompt : “甚至出现”

      Causal   : “甚至出现交”
LookAhead  : “甚至”
ZeroPrompt : “甚至出现交易”

      Causal   : “甚至出现交易几乎”
LookAhead  : “甚至出现交”
ZeroPrompt : “甚至出现交易几乎停滞”

      Causal   : “甚至出现交易几乎停滞的 ”
LookAhead  : “甚至出现交易几乎”
ZeroPrompt : “甚至出现交易几乎停滞的情况”

      Causal   : “甚至出现交易几乎停滞的情况 ”
LookAhead  : “甚至出现交易几乎停滞的 ”
ZeroPrompt : “甚至出现交易几乎停滞的情况 ”

Figure 3: Comparison of on-screen time among three methods.
We can clearly see that ZeroPrompt significantly improved the
user-perceived latency. By comparing the result of ZeroPrompt
in (a) & (b), we observe that the mistake made by the first Ze-
roPrompt chunk (“剩”) is quickly fixed after the arrival of the
second chunk which contains the real infos of the first few char-
acters (“甚至”), this is so called Prompt-and-Refine.

We further provide a concrete example to compare Zero-
Prompt with other methods in Figure 2. It should be noted that
it’s reasonable for the predictions from the first ZeroPrompt
chunk to be inaccurate due to the lack of contextual informa-
tion. However, this is not a significant issue since most of the
errors are homophones of the correct counterparts, i.e., (“剩,
sheng in English”) vs. (“甚, shen in English”) in this exam-
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Table 1: Comparison of different ZeroPrompt length across different chunk size on different dataset. From left to right: (a) length
of ZeroPrompt. (b) First Token Display Time (TDT-F). (c) Last Token Display Time (TDT-L). (d) Prompts Error Rate for First chunk
(PER-F). (e) Prompts Error Rate for Last chunk (PER-L). (f) Prompts Error Rate for All chunks (PER-A). (g) Word Error Rate (WER,
1st-pass Greedy Search / 2nd-pass Rescore). (h) Real Time Factor (RTF, 1st-pass Greedy Search / 2nd-pass Rescore, tested on Intel(R)
Core(TM) i5-8400 CPU @ 2.80GHz using int8 quantization and single-thread). (i) Prompts Per Chunk (PPC). We note that the PER
of Librispeech is significantly lower than that of Aishell-1. This is because we decode Librispeech using Byte Pair Encoding (BPE)
but calculate the Prompts Error Rate using English characters. A BPE usually consists of several characters, and even if the BPE is
incorrect, there may be correct letters, in other words, the denominator of PER increases while the numerator decreases.

(a) ZeroPrompt (b)TDT-F (c) TDT-L (d) PER-F (%) (e) PER-L (%) (f) PER-A (%) (g) WER (%) (h) RTF (i) PPC

Aishell-1 (test), 104765 total characters, 7176 total sentences

640ms chunk size with 59081 total chunks

0ms 1279ms (∼) 4806ms (∼) - - - 5.81 / 5.05 0.04351 / 0.05063 -
80ms 1272ms (↓7) 4762ms (↓44) 87 / 2191 = 3.9% 7 / 947 = 0.7% 442 / 12059 = 3.6% 5.81 / 5.05 0.04816 / 0.05495 0.20

160ms 1234ms (↓45) 4706ms (↓100) 266 / 4351 = 6.1% 19 / 1937 = 0.9% 1162 / 23450 = 4.9% 5.81 / 5.05 0.05009 / 0.05722 0.39
320ms 876ms (↓403) 4603ms (↓203) 1834 / 7457 = 24.5% 152 / 4211 = 3.6% 5183 / 46180 = 11.2% 5.81 / 5.05 0.05378 / 0.06282 0.78
640ms 646ms (↓633) 4472ms (↓334) 5816 / 10150 = 57.3% 867 / 7408 = 11.7% 20181 / 71091 = 28.3% 5.81 / 5.05 0.06447 / 0.07425 1.20

1280ms 646ms (↓633) 4432ms (↓374) 6563 / 10570 = 62.0% 1217 / 7712 = 15.7% 24179 / 74220 = 32.5% 5.81 / 5.05 0.08486 / 0.09876 1.26

320ms chunk size with 114559 total chunks

0ms 1015ms (∼) 4575ms (∼) - - - 6.13 / 5.27 0.06007 / 0.06748 -
80ms 965ms (↓50) 4551ms (↓24) 109 / 2406 = 4.5% 6 / 1770 = 0.3% 1263 / 25484 = 4.9% 6.13 / 5.27 0.06609 / 0.07526 0.22

160ms 939ms (↓76) 4524ms (↓51) 289 / 4697 = 6.1% 33 / 3575 = 0.9% 28823 / 48779 = 5.9% 6.13 / 5.27 0.07446 / 0.07884 0.43
320ms 762ms (↓253) 4443ms (↓132) 1795 / 7939 = 22% 224 / 7677 = 2.9% 9692 / 91571 = 10.5% 6.13 / 5.27 0.07974 / 0.08979 0.80
640ms 641ms (↓374) 4353ms (↓222) 5750 / 10065 = 57% 1595 / 11493 = 13.8% 36893 / 137868 = 26.7% 6.13 / 5.27 0.09645 / 0.11290 1.20

1280ms 621ms (↓394) 4290ms (↓285) 6509 / 10268 = 63.3% 2052 / 11767 = 17.4% 44869 / 144402 = 31.0% 6.13 / 5.27 0.13690 / 0.15990 1.26

160ms chunk size with 225482 total chunks

0ms 971ms (∼) 4423ms (∼) - - - 6.35 / 5.39 0.09616 / 0.10590 -
80ms 889ms (↓82) 4428ms (↑5) 231 / 3718 = 6.2% 3 / 835 = 0.3% 1655 / 51827 = 3.1% 6.35 / 5.39 0.10830 / 0.12070 0.23

160ms 826ms (↓145) 4446ms (↑23) 659 / 6552 = 10.0% 53 / 4294 = 1.2% 4995 / 99480 = 5.0% 6.35 / 5.39 0.11180 / 0.12530 0.44
320ms 700ms (↓271) 4388ms (↓35) 2150 / 7549 = 28.4% 276 / 7785 = 3.5% 18433 / 182513 = 10.0% 6.35 / 5.39 0.13040 / 0.14710 0.81
640ms 574ms (↓397) 4271ms (↓152) 5894 / 8527 = 69% 2104 / 12304 = 17.1% 73053 / 275551 = 26.5% 6.35 / 5.39 0.16700 / 0.19220 1.22

1280ms 549ms (↓422) 4234ms (↓189) 6761 / 8918 = 75.8% 2612 / 12544 = 20.8% 89647 / 289123 = 31.0% 6.35 / 5.39 0.24220 / 0.28250 1.28

Librispeech (test clean), 283993 total characters, 2620 total sentences

640ms chunk size with 31381 total chunks

0ms 1136ms (∼) 7328ms (∼) - - - 4.41 / 3.80 0.04826 / 0.05644 -
80ms 1038ms (↓98) 7280ms (↓48) 60 / 4501 = 1.3% 35 / 1607 = 2.1% 459 / 35507 = 1.2% 4.41 / 3.80 0.05184 / 0.06111 1.13

160ms 935ms (↓201) 7235ms (↓93) 146 / 8344 = 1.7% 49 / 3040 = 1.6% 1112 / 68465 = 1.6% 4.41 / 3.80 0.05543 / 0.06435 2.18
320ms 761ms (↓375) 7149ms (↓179) 812 / 13916 = 5.8% 230 / 5929 = 3.8% 5667 / 123304 = 4.5% 4.41 / 3.80 0.05951 / 0.06979 3.93
640ms 662ms (↓474) 7098ms (↓230) 2552 / 17570 = 14.5% 577 / 8002 = 7.2% 16743 / 159472 = 10.4% 4.41 / 3.80 0.07006 / 0.08295 5.08

1280ms 658ms (↓478) 7091ms (↓237) 2522 / 17696 = 14.2% 658 / 8372 = 7.8% 18085 / 162531 = 11.1% 4.41 / 3.80 0.09096 / 0.10720 5.18

320ms chunk size with 61432 total chunks

0ms 928ms (∼) 7147ms (∼) - - - 4.76 / 4.04 0.06996 / 0.08025 -
80ms 853ms (↓75) 7128ms (↓19) 67 / 5185 = 1.2% 71 / 2552 = 2.7% 1041 / 70996 = 1.4% 4.76 / 4.04 0.07476 / 0.08630 1.16

160ms 789ms (↓139) 7091ms (↓56) 157 / 9028 = 1.7% 69 / 5103 = 1.3% 2372 / 136656 = 1.7% 4.76 / 4.04 0.08155 / 0.09210 2.22
320ms 662ms (↓266) 7005ms (↓142) 839 / 13855 = 6.0% 363 / 10664 = 3.4% 10814 / 246692 = 4.3% 4.76 / 4.04 0.08963 / 0.10370 4.02
640ms 569ms (↓359) 6950ms (↓197) 2361 / 15297 = 15.0% 977 / 13863 = 7.0% 29997 / 317552 = 9.4% 4.76 / 4.04 0.10890 / 0.12630 5.17

1280ms 561ms (↓367) 6945ms (↓202) 2389 / 15241 = 15.6% 1135 / 14228 = 7.9% 32287 / 323612 = 9.9% 4.76 / 4.04 0.14990 / 0.17770 5.28

160ms chunk size with 121531 total chunks

0ms 857ms (∼) 7043ms (∼) - - - 5.10 / 4.30 0.11770 / 0.12970 -
80ms 786ms (↓71) 7063ms (↑20) 65 / 5395 = 1.2% 59 / 2345 = 2.5% 1462 / 140612 = 1.0% 5.10 / 4.30 0.12880 / 0.14350 1.16

160ms 704ms (↓153) 7048ms (↑5) 135 / 10685 = 1.2% 84 / 5830 = 1.4% 3833 / 271459 = 1.4% 5.10 / 4.30 0.13480 / 0.15050 2.23
320ms 579ms (↓278) 6959ms (↓84) 833 / 11942 = 6.9% 470 / 11533 = 4.0% 16573 / 493650 = 3.3% 5.10 / 4.30 0.14760 / 0.17060 4.06
640ms 505ms (↓352) 6909ms (↓134) 2246 / 12438 = 18% 1274 / 14642 = 8.7% 44768 / 638700 = 7.0% 5.10 / 4.30 0.19030 / 0.22190 5.26

1280ms 502ms (↓355) 6903ms (↓140) 2381 / 12612 = 18.8% 1438 / 15262 = 9.4% 48181 / 649938 = 7.4% 5.10 / 4.30 0.26960 / 0.31480 5.35

Librispeech (test other), 274213 total characters, 2939 total sentences

640ms chunk size with 31120 total chunks

0ms 1209ms (∼) 6428ms (∼) - - - 11.48 / 10.40 0.04826 / 0.05644 -
80ms 1130ms (↓79) 6407ms (↓21) 126 / 5013 = 2.5% 47 / 1708 = 2.7% 800 / 33840 = 2.3% 11.48 / 10.40 0.05184 / 0.06111 1.09

160ms 1032ms (↓177) 6362ms (↓66) 366 / 9226 = 3.9% 110 / 3243 = 3.3% 2342 / 66182 = 3.5% 11.48 / 10.40 0.05543 / 0.06435 2.13
320ms 821ms (↓388) 6252ms (↓176) 1545 / 15336 = 10.0% 371 / 6970 = 5.3% 9839 / 121799 = 8.0% 11.48 / 10.40 0.05951 / 0.06979 3.91
640ms 668ms (↓541) 6208ms (↓220) 3446 / 18363 = 18.7% 904 / 9195 = 9.8% 23456 / 158130 = 14.8% 11.48 / 10.40 0.07006 / 0.08295 5.08

1280ms 665ms (↓544) 6202ms (↓226) 3598 / 18616 = 19.3% 1033 / 9549 = 10.8% 24264 / 160299 = 15.1% 11.48 / 10.40 0.09096 / 0.10720 5.15

320ms chunk size with 60793 total chunks

0ms 978ms (∼) 6215ms (∼) - - - 12.19 / 11.06 0.06996 / 0.08025 -
80ms 898ms (↓80) 6235ms (↑20) 150 / 5671 = 2.6% 79 / 2773 = 2.8% 1606 / 67888 = 2.3% 12.19 / 11.06 0.07476 / 0.08630 1.12

160ms 840ms (↓138) 6194ms (↓21) 378 / 10017 = 3.7% 130 / 5570 = 2.3% 4445 / 131505 = 3.3% 12.19 / 11.06 0.08155 / 0.09210 2.16
320ms 716ms (↓262) 6108ms (↓107) 1526 / 15766 = 9.6% 595 / 12212 = 4.8% 17909 / 241994 = 7.4% 12.19 / 11.06 0.08963 / 0.10370 3.98
640ms 613ms (↓365) 6052ms (↓163) 3339 / 17106 = 19.5% 1578 / 15498 = 10.1% 41238 / 312230 = 13.2% 12.19 / 11.06 0.10890 / 0.12630 5.13

1280ms 611ms (↓367) 6051ms (↓164) 3517 / 17336 = 20.2% 1699 / 15953 = 10.6% 42756 / 316521 = 13.5% 12.19 / 11.06 0.14990 / 0.17770 5.21

160ms chunk size with 120144 total chunks

0ms 909ms (∼) 6095ms (∼) - - - 13.14 / 11.85 0.11770 / 0.12970 -
80ms 835ms (↓74) 6124ms (↑29) 114 / 6222 = 1.8% 70 / 3211 = 2.1% 2192 / 134209 = 1.6% 13.14 / 11.85 0.12880 / 0.14350 1.11

160ms 758ms (↓151) 6108ms (↑13) 363 / 12015 = 3.0% 126 / 7313 = 1.7% 6349 / 262655 = 2.4% 13.14 / 11.85 0.13480 / 0.15050 2.19
320ms 629ms (↓280) 6045ms (↓50) 1467 / 13593 = 10.7% 931 / 14206 = 6.5% 26746 / 487285 = 5.4% 13.14 / 11.85 0.14760 / 0.17060 4.06
640ms 552ms (↓357) 5990ms (↓105) 3169 / 14189 = 22.3% 2239 / 17967 = 12.4% 60588 / 628283 = 9.6% 13.14 / 11.85 0.19030 / 0.22190 5.23

1280ms 548ms (↓361) 5982ms (↓113) 3319 / 14385 = 23.0% 2435 / 18567 = 13.1% 62239 / 636094 = 9.7% 13.14 / 11.85 0.26960 / 0.31480 5.29
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ple. Additionally, these errors will be quickly corrected by the
Prompt-and-Refine strategy, as demonstrated in Figure 3.

3. Experiments
To demonstrate the effectiveness of our proposed ZeroPrompt,
we carry out our experiments on the open-source Chinese Man-
darin speech corpus Aishell-1 [20] and English speech corpus
Librispeech [21]. ZeroPrompt is a training-free method and can
be directly applied to a well-trained chunk-based ASR model.
To ensure the reproducibility of experiments, we used check-
points downloaded from the official WeNet [22] website for all
of our baseline models and keep the exact same settings as in
open-sourced Aishell-1 and Librispeech recipes.

3.1. Metrics

Besides Token Display Time (TDT, TDT-F for First token and
TDT-L for Last token), Word Error Rate (WER) and Real
Time Factor (RTF), we propose several additional metrics to
better analyze the effectiveness of ZeroPrompt. Specifically, we
introduce two new metrics that are designed for ZeroPrompt:
• Prompts Error Rate (PER, PER-F for First chunk, PER-L

for Last chunk and PER-A for All chunks): PER is calculated
by dividing Prompt Errors (PE) by the Number of Prompts
(NP). NP represents the number of future characters decoded
from the ZeroPrompt chunk, while PE denotes the number of
errors that occur among those characters.

• Prompts Per Chunk (PPC): The PPC is obtained by dividing
the total number of prompts by the total number of chunks.
This metric provides insight into the average number of fu-
ture characters prompted per chunk.

3.2. Main Results

We present the main results of ZeroPrompt in Table 1, from
which 5 conclusions can be deduced:
• A larger ZeroPrompt length generally results in lower Token

Display Time (TDT) for all languages and chunk sizes. How-
ever, when the length exceeds a certain threshold (i.e., greater
than 640ms), there is a latency ceiling imposed by both the
chunk size (TDT cannot be smaller than chunk size due to
the required data collecting time) and the leading silence (the
ASR model cannot prompt tokens if both the current chunk
and the ZeroPrompt chunk contain only silences or zeros).

• A larger ZeroPrompt length also results in a higher PER, but
this is not a significant problem because they can be rapidly
corrected using our Prompt-and-Refine strategy, which is de-
scribed in Section 2 and illustrated in Figure 3.

• The closer a chunk is to the end of a sentence, the more ac-
curate the prompts are. It is clear that PER-L is much better
than PER-F, which is reasonable because the first tokens of-
ten lack context information while the last tokens have richer
context.

• Thanks to the autoregressive attention mask (Figure 1-(b))
and the Prompt-and-Refine strategy (Figure 3), the WER for
the final result remained unchanged. However, we observed
a slight increase in RTF due to the increased input length.
It’s worth noting that, if compared within a similar RTF,
[640ms chunk size & 640ms ZeroPrompt, Aishell-1, RTF
0.06447/0.07425] significantly outperforms [320ms chunk
size & 0ms ZeroPrompt, Aishell-1, RTF 0.06007/0.06748] in
TDT-F (646ms v.s. 1015ms), TDT-L (4472ms v.s. 4575ms)
and WER (5.81/5.05 v.s. 6.13/5.27). This is mainly because

the 640ms chunk size provides more context information than
the 320ms chunk size, and the 640ms ZeroPrompt greatly re-
duces latency compared to the 0ms baseline. Moreover, to
offer users greater flexibility in balancing latency (TDT &
PPC) and RTF, we further discuss a solution in Section 3.3.

• It appears that PPC only correlates with ZeroPrompt length,
as different chunk sizes result in similar PPC values.

Overall, based on the results from Aishell-1, we can con-
clude that ZeroPrompt provides the best trade-off between la-
tency (TDT & PPC) and WER, both theoretically and exper-
imentally. It achieves a reduction of 350 ∼ 700ms in TDT-F
and 100 ∼ 400ms in TDT-L, while keeping WER unchanged.
This conclusion is further supported by the results from Lib-
rispeech, which demonstrate that ZeroPrompt generalizes well
to any dataset without requiring any extra effort.

3.3. Solution to balance latency-RTF Trade-off

As described in Section 3.2, although the latency-WER trade-
off has been solved, there is also a trade-off between latency
(TDT & PPC) and RTF. In this section, we present a solution,
called Intermediate ZeroPrompt, to better balance latency and
RTF. Specifically, we feed the ZeroPrompt chunk starting from
different encoder layers to achieve different computation costs.
From Table 2, it can be observed that one can simply change the
start layer to meet the desired latency and RTF requirements.

Table 2: Results of Intermediate ZeroPrompt [640ms chunk size
& 640ms ZeroPrompt, Aishell-1]. 0 means we feed ZeroPrompt
chunk to the first encoder layer and this is the default Zero-
Prompt method used in Table 1. -1 means baseline without Ze-
roPrompt.

StartLayer TDT-F TDT-L PPC RTF

0 646ms 4472ms 1.20 0.06447 / 0.07425
4 649ms 4477ms 1.20 0.05779 / 0.06906
6 778ms 4562ms 0.97 0.05444 / 0.06596
8 1099ms 4652ms 0.70 0.05186 / 0.06273
11 1149ms 4815ms 0.34 0.04734 / 0.05858

-1 1279ms 4806ms - 0.04351 / 0.05063

3.4. Error Analysis

Lastly, we provide error analysis on [640ms chunk size &
1280ms ZeroPrompt, Aishell-1] as this configuration achieves
the worst PER and the best PPC. We find that errors can be
categried into two types:
• Homophonic tokens, typically occur at the beginning of

prompts. This is reasonable because the current chunk may
only contain partial pronunciations of the character, and Ze-
roPrompt forces the model to emit a complete character based
on these partial pronunciations thus leading to homophone
errors.

• Semantically continuous but phonetically mismatched to-
kens, typically occur at the end of a very long prompt. The
trailing part of ZeroPrompt chunk contains no partial pronun-
ciation, therefore the prediction of trailing prompts solely de-
pends on the history context without any acoustic hints, like a
Masked LM, this further validate our conjecture that stream-
ing ascoutic encoders are zero-shot Masked LMs.
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