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Abstract
Recently, the mainstream x-vector for speaker verification usu-
ally adopts a one-hot encoded fully-connected (FC) layer for
classification at the training stage. Suppose a large-scale dataset
(e.g., one million speakers) is prepared to optimize the net-
work. The unbearable computation cost and memory require-
ment are mainly from the FC layer. We propose a dynamic
fully-connected (Dynamic FC) layer for speaker verification to
achieve a tradeoff between hardware resources and system per-
formance. The proposed Dynamic FC uses a dynamic class
queue (DCQ) to store a subset of speaker identity centers and
uses an identity-based data loading mechanism to realize mem-
ory and time savings. The virtue of the proposed method is that
the required memory only depends on the size of the DCQ and
does not increase with the number of speakers in the training
dataset. The proposed method on the VoxCeleb dataset achieves
an EER of 2.345% and a minDCF of 0.261 at a low memory and
computation cost.
Index Terms: speaker verification, large-scale, dynamic fully-
connected layer, dynamic class queue

1. Introduction
The speaker verification task is to verify whether a speaker has
the target identity by analyzing their acoustic features. In recent
years, deep neural networks have made significant progress in
the speaker verification task [1, 2, 3]. To further advance the
performance and generalizability of speaker verification mod-
els, the benefits of self-supervised learning (SSL) in speaker
verification tasks are explored in [4, 5, 6, 7]; unsupervised do-
main adaptation [8, 9, 10] methods aim to transfer the model
trained from well-labeled source dataset to the target dataset
with weak labels; [11, 12] examined the effect of speaker’s
different attributes on the speaker verification task; The article
[13, 14] makes the distance between intra-class samples smaller
by optimizing the loss function; and [15, 16] were devoted to a
new framework to solve the problem of adding newly registered
users to the model.

In previous studies on the performance and computational
complexity of speaker verification tasks, more scholars have
focused on the inference phase of the system [17, 18] to
obtain lightweight models that can be deployed to resource-
constrained devices. For any task related to speaker verifica-
tion in the training phase, using large-scale speaker verifica-
tion datasets will improve the system performance and make the
model generalize better. However, the large number of speak-
ers causes the number of FC parameters for classification in the
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model to grow linearly, slows down the model’s training, and
challenges the hardware resources.

Due to the relatively small number of speakers included in
the current open-source datasets in speaker verification, only
some scholars have focused on the challenges posed by large-
scale datasets during training. Face recognition as a characteri-
zation of biometric traits also encounters challenges on large-
scale face datasets. In [19, 20], the proposed load-balanced
sparse distributed classification algorithm effectively improves
the training efficiency. However, this approach does not re-
duce the number of parameters of the FC layer for classifica-
tion. So [21] used mapping to make different speakers share
weights and used a re-grouping strategy to resolve anchor con-
flicts. Momentum contrast (MoCo) [22] has achieved great suc-
cess in the unsupervised domain, where each sample represents
a class of ideas. It artificially creates a large-scale problem that
can be efficiently solved using a queue and momentum updates.
Like MoCo, dynamic class queue [23] works in large-scale face
recognition tasks by dynamically storing and updating identity
features as a replacement for the FC layer. Further, [24] uses
dual loaders to update the dynamic class queue efficiently.

This paper introduces a Dynamic FC layer built upon a
contrast learning framework to tackle large-scale speaker ver-
ification tasks. We evaluate the effectiveness of our model on
the widely-used open-source speaker dataset, VoxCeleb. Fur-
thermore, we compare the Dynamic FC layer and the conven-
tional FC layer, as well as our previously proposed virtual fully-
connected (Virtual FC) layer [25], in terms of performance and
memory usage. Our main contributions are as follows.
• We propose a Dynamic FC layer, which uses a DCQ to store

and update a subset of all speaker identity centers. This ap-
proach reduces computation costs and memory requirements
in large-scale speaker verification training.

• Instead of using a self-supervision technique, which involves
intercepting two equal-length segments of an utterance sepa-
rately for data enhancement, we utilize an identity-based ap-
proach for data loading. This method reduces the training
time by half, making it more efficient.

2. Virtual Fully-Connected Layer
This section introduces the Virtual FC layer we previously pro-
posed to address large-scale speaker verification tasks.

In the traditional x-vector [26] model, we obtain speaker
embeddings of fixed dimensions by an encoder. Then these em-
beddings are fed to the FC layer with one-hot encoding to get
logits. In Virtual FC, we map speakers to M groups (M is
a hyperparameter) by taking remainders. During training, the
re-grouping strategy is used to resolve the conflicts generated
by including the same group of speakers in the mini-batch. As
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Figure 1: The pipeline of Virtual FC. K is the number of utterances per speaker in each mini-batch.

shown in Figure 1, we can set M to be much smaller than the
number of speakers to solve the hardware resource constraint
problem.

2.1. Corresponding Anchor and Free Anchor

When using the Virtual FC layer, we must have more than one
speaker utterance in each mini-batch. After the utterances are
fed to the encoder and the speaker embedding is obtained, we
map speakers to M groups. The identity mapped to the l group
shares the l-th column parameters of the weight W . We call the
l-th column parameters of W named anchorl. There are two
types of weight coefficients in the W . One is the corresponding
anchor, denoted by anchorcorr , and the other is the free anchor,
denoted by anchorfree. If there exists an identity in the Vir-
tual FC that belongs to l, then anchorl belongs to anchorcorr .
Otherwise, it belongs to anchorfree. The type of anchor is dy-
namically changed during training. The identity first mapped
to the l group in the mini-batch will become anchorcorr . The
value of anchorcorr is the result of summing the weights of all
embeddings of this identity in the mini-batch. The next identi-
ties mapped to the l group again will conflict, and we use the
re-grouping strategy to temporarily store these features using
anchorfree.

2.2. Re-grouping Strategy

Since we are mapping speakers to M groups, there will be cases
where different speaker identities will be mapped to one group.
Therefore, the corresponding re-grouping strategy is set. There
are three cases of identities belonging to group l.

1) When anchorl is not matched, it will change to a
anchorcorr .

2) When anchorl has been matched, it will be temporarily as-
signed a anchorfree, making it a anchorcorr .

3) The anchor is discarded if there is a conflict and no
anchorfree exists.

3. Dynamic Fully-Connected Layer
In this section, we first introduce an overview of our proposed
Dynamic FC layer. Next, we illustrate the principle of the dy-
namic class queue. Then, we describe the momentum updates
that keep the feature in the queue consistent. Finally, it explains
how we use the AAM-Softmax loss for backpropagation.

3.1. Overview of Dynamic FC

In Virtual FC, we group the speakers by taking the remainder of
the mapping size M . Speakers in the same group will share the

same weight values. This method of randomly clustering dif-
ferent speakers puts a constraint on the performance improve-
ment of the system. To address this problem, we propose a new
method called Dynamic FC. As shown in Figure 2, Dynamic FC
uses a DCQ to dynamically store a subset of all speaker iden-
tity centers based on contrast learning. This method effectively
avoids the impact of random clustering of speakers on the sys-
tem performance.

In Dynamic FC, we introduce twin backbones named Probe
Net (P-Net) and Gallery Net (G-Net) [24] to extract speaker fea-
tures and generate pseudo identity centers. G-Net has the same
network structure as P-Net and inherits the parameters from P-
Net in a moving average manner. In a mini-batch containing N
speakers, we randomly select two utterances for each speaker to
get (xi,j , yi), where i ∈ {1, 2, · · · , N} and j ∈ {1, 2}. xi,1 is
fed to P-Net to get speaker embeddings ei,1, and xi,2 is fed to
G-Net to generate pseudo identity centers ei,2.

As mentioned above, we generate pseudo identity centers
through the G-Net network. There are two implications here.
One is that, in each training iteration, we want the speaker fea-
tures extracted by P-Net to be closer to the speaker features ex-
tracted by G-Net, so the speaker features extracted by G-Net
play the role of speaker identity center. Second, the speaker
features extracted by G-Net are different from true identity cen-
ters. We gradually approach the true identity centers in the train-
ing iterations, so we define the features extracted by G-Net as
pseudo identity centers.

The number of utterances in the current open-source dataset
is much larger than the number of speakers. Therefore, in con-
trast to the traditional approach of augmenting features, we use
an identity-based approach to generate sample pairs. In self-
supervised learning [6, 27], the data is usually passed into the
network as two segments of selected speech of fixed length in-
tercepted separately. The data is enhanced in different ways. We
also conducted experiments with the same data loading method,
and the performance did not improve compared to our proposed
method. Our proposed approach of selecting two utterances of
a speaker for data loading can save training time. The first ben-
efit is that we do not perform augmentation will reduce the time
spent on data pre-processing. Secondly, half of the utterances
in each epoch are used for training, reducing the training time
by almost half.

3.2. Dynamic Class Queue

A queue is defined as a linear data structure that is open at
both ends, and the operations are performed in first-in-first-out
(FIFO) order. In Dynamic FC, we use a DCQ storage pseudo
identity centers that contain speaker labels. At each iteration,
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Figure 2: The pipeline of Dynamic FC. Instead of augmenting the utterance, we randomly select two utterances per speaker in the
mini-batch. Then feed one into the P-Net and the other into the G-Net.

the embeddings in the latest mini-batch enter the queue, and the
embeddings in the oldest mini-batch leave the queue.

The queue size C is an integer multiple of the mini-batch
and will be set as a hyperparameter. The DCQ stores a subset
of all identity centers and will be computed as negative samples
for loss. Since no updated parameters are required, the queue
size impacts the overall computation time.

3.3. Momentum Update

Since a DCQ stores a certain number of pseudo identity cen-
ters, it cannot make the queue data perform gradient backprop-
agation. There is no way for G-Net to update its parameters by
backpropagation. A quick update of G-Net parameters will lead
to the data in the queue cannot be kept consistent. So we use the
moving average to update the parameters in G-Net. We let the
parameters of P-Net be θp and the corresponding parameters of
G-Net be θg . The corresponding equation is as follows.

θg ← αθg + (1− α)θp (1)

Where α ∈ [0, 1) is the momentum coefficient, all values
of α are set to 0.999 in our experiments.

3.4. AAM-Softmax Loss

Speaker verification tasks usually use the Softmax loss func-
tion to classify speakers during training. This paper uses AAM-
Softmax [28] as a loss function. The following equation is used.

L = − 1

N

N∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑C

j=1,yj ̸=yi
e
s cos θyj

(2)
Where N is the number of utterances in each batch fed to

P-Net, C is the size of the dynamic class queue, s is a scaling
factor and m is a margin between different classes. Specifically,
cos θyi = ⟨ei,1,ei,2⟩.

4. Experimental setup
4.1. Dataset

Our experiments are conducted on the VoxCeleb1&2 [29, 30]
datasets. The development set of VoxCeleb2 is used to train
models, which contain 5994 speakers. No data augmentation

is used. VoxCeleb1 is used as testing data. To evaluate the
performance of our system, we used the three official test lists
(VoxCeleb1, VoxCeleb1-H, and VoxCeleb1-E). Equal error rate
(EER) and minimum detection cost function (minDCF) are used
as metrics for the systematic evaluation.

4.2. Implementation Details

We use an x-vector structure to extract the speaker embeddings.
We set the frame length to 25 ms, and the frame shift to 10 ms.
For training, we randomly select 200 frames and use them as
input to the model. 80-dimensional Fbanks are used as input
features. ResNet34 topology is used for frame-level feature ex-
traction. Then the frame-level features are fed into the attentive
statistics pooling (ASP) [31] layer to get speaker embeddings.
Every model uses the AAM-Softmax loss to classify speakers.
We set the model to train for 25 epochs. Both use the Adam [32]
algorithm to optimize the model and decay the learning rate of
each parameter group by 0.4 every five epochs.

In our FC experiments, we employ a batch size of 200. For
our Dynamic FC experiments, we adopt a larger batch size of
400, wherein each mini-batch comprises 200 speakers. Each
speaker has two utterances fed into the P-Net and G-Net net-
works. We use 512-dimensional speaker embeddings. For the
AAM-Softmax loss, we set the margin to 0.3 and the scaling
factor to 30. We employ the Adam optimization algorithm with
an initial learning rate of 0.01.

The Virtual FC architecture utilizes a batch size of 192,
with each mini-batch comprising 64 speakers. Three randomly
selected utterances are fed into the training network for each
speaker. We use 256-dimensional speaker embeddings. For the
AAM-Softmax loss, we set the margin to 0.5 and the scaling
factor to 30. We employ the Adam optimization algorithm with
an initial learning rate of 0.0002.

5. Results and analysis
In Table 1, we compare FC, Virtual FC, and Dynamic FC per-
formance. The size column shows the number of groups to
which speakers are mapped in the Virtual FC section, while in
the Dynamic FC section, it indicates the queue size of the DCQ.
FC achieves the best EER and minDCF results across all three
test lists using one-hot encoding.

The Virtual FC layer maps 5994 speakers to 600, 1200,
1800, and 3000 groups. The results show that the system’s
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Table 1: EER(%) and minDCF(0.01) results on VoxCeleb1. The number in the size column represents the number of groups to which
speakers are mapped in the Virtual FC section, while in the Dynamic FC section, it represents the queue size of the DCQ.

Method Size VoxCeleb1 VoxCeleb1-H VoxCeleb1-E

EER(%) minDCF(0.01) EER(%) minDCF(0.01) EER(%) minDCF(0.01)

FC - 1.500 0.15811 2.480 0.23547 1.459 0.15892

Virtual FC

600 2.867 0.29951 4.805 0.41605 2.939 0.31312
1200 3.079 0.29786 4.705 0.39518 2.976 0.30607
1800 3.510 0.33366 5.417 0.44847 3.415 0.34464
3000 4.074 0.40232 6.307 0.49780 4.100 0.38667

Dynamic FC

600 2.665 0.28712 4.737 0.44772 2.708 0.32213
1200 2.803 0.28574 4.577 0.42459 2.656 0.31060
1800 2.649 0.27994 4.652 0.43419 2.669 0.31589
3000 2.345 0.26115 4.191 0.39696 2.394 0.28295
4200 2.457 0.28809 4.495 0.42024 2.531 0.30313

performance improves as the number of mapped identities de-
creases. The best performance is achieved with 600 and 1200
mapped identities. In model training, we randomly bring the
features of one to two people closer together when dividing into
3000 groups and randomly bring the features of four to five peo-
ple closer together when dividing into 600 groups. Higher num-
bers of people result in greater error tolerance. When selecting
a group of two people at random, there is a high likelihood that
the features of the two speakers within the group are far apart in
space.

When the size of the DCQ was set to 3000, the Dynamic
FC layer achieved the best performance on all three test sets.
Using about 3000 identity centers can classify the VoxCeleb2
dataset of 5994 speakers for classification. From the data in the
table, we know that the performance of the DCQ queue size to
obtain the median value is better than the other cases. We an-
alyze the reasons for this situation from two aspects. One is
that the development set of VoxCeleb2 contains 5994 speakers.
When setting a smaller queue, it is difficult to carry the infor-
mation of all the speakers in the dataset; second is that when the
queue size keeps getting larger, a more binding model or a larger
dataset (e.g., a dataset of a million speakers) is needed to dis-
tinguish the speakers. In our experiments, we set the margin in
the AAM-Softmax loss differently from the usual setting of 0.2.
We set larger values of 0.3 and 0.5. In addition to the loss func-
tion, other aspects of increasing the constraint are further worth
exploring. Similar to speaker recognition in face recognition,
large-scale task datasets are usually trained with 1% of identity
centers selected from millions of identity datasets, which we
believe is why the performance does not improve further as the
cohort size increases.

Dynamic FC outperforms Virtual FC in most test sets when
M and C are set to the same value. Specifically, when the value
is set to 3000, Dynamic FC significantly improves the EER and
minDCF performance on VoxCeleb1 by 33% and 22%, respec-
tively, compared to Virtual FC. This improvement is mainly at-
tributed to the performance constraint imposed by Virtual FC,
which forces different speakers to share weights. On the other
hand, Dynamic FC stores a subset of all speaker identity centers,
which are dynamically changing and becoming more accurate
as the model is trained.

The FC layer is not suitable for large-scale speaker verifi-

Table 2: The number of parameters for different FC layers when
the size is set to 600.

Method Wight
Shape # Params Memory

Saving

FC 512× 5994 3069.928K 1×
Virtual FC 256× 600 153.6K ∼ 20×

Dynamic FC 512× 600 307.2K ∼ 10×

cation tasks. Typically, one-hot encoding is used, which results
in the number of parameters growing linearly with the number
of speakers. In Table 2, we analyze the number of parameters
for different FC layers when the size is 600. When the speaker
embeddings are 512-dimensional, the memory usage of the FC
layer is approximately ten times that of the Dynamic FC layer.
For the Virtual FC layer that uses 256-dimensional speaker em-
beddings, its memory usage is approximately one-twentieth that
of the FC layer. It is conceivable that when a dataset of one mil-
lion speakers is used, choosing values much smaller than the
number of speakers M or C would solve the hardware resource
constraint problem. Additionally, we believe the performance
gap can be attributed to using smaller speaker datasets.

6. conclusion
This paper proposes a Dynamic FC layer for large-scale speaker
verification. The Dynamic FC layer utilizes a DCQ to store
a subset of all speaker identity centers during training and
loads data based on identity for efficient time and cost sav-
ings. Additionally, we compare this approach with our previ-
ously proposed Virtual FC layer. Our experiments on the Vox-
Celeb datasets demonstrate that a DCQ (Dynamic FC) yields
better performance than a group of speakers sharing weights
(Virtual FC). In terms of performance, a gap exists between
our proposed approach and the one-hot coding-based FC layer.
However, our article aims to provide a solution for large-scale
speaker verification tasks rather than simply striving for better
results than FC layers. Furthermore, the Dynamic FC layer is
suitable for larger speaker datasets, and we will further validate
its efficacy.
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