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Abstract
Recent studies have shown that the underlying neural mecha-
nisms of human speech comprehension can be analyzed using
a match-mismatch classification of the speech stimulus and the
neural response. However, such studies have been conducted
for fixed-duration segments without accounting for the discrete
processing of speech in the brain. In this work, we establish that
word boundary information plays a significant role in sentence
processing by relating EEG to its speech input. We process
the speech and the EEG signals using a network of convolution
layers. Then, a word boundary-based average pooling is per-
formed on the representations, and the inter-word context is in-
corporated using a recurrent layer. The experiments show that
the modelling accuracy can be significantly improved (match-
mismatch classification accuracy) to 93% on a publicly avail-
able speech-EEG data set, while previous efforts achieved an
accuracy of 65-75% for this task.
Index Terms: Speech-EEG match mis-match task, auditory
neuroscience, word segmentation, speech comprehension.

1. Introduction
Humans have the unique ability to communicate through
speech. While speech comprehension is mastered from a young
age, many neural processes enabling this seamless activity are
unknown. One of the simplest ways of furthering the un-
derstanding of speech comprehension is through the recording
of neural responses using electroencephalography (EEG). The
EEG is a non-invasive neural imaging technique that measures
electrical activity in the brain by placing electrodes on the scalp
[1]. It has been demonstrated that the EEG signal recorded dur-
ing a speech listening task contains information about the stim-
ulus [2]. One can investigate how the brain comprehends con-
tinuous speech by developing models that relate the speech with
the EEG signal using machine learning techniques [3].

The early attempts explored linear models for relating con-
tinuous natural speech to EEG responses [4, 5, 6, 7]. They can
be categorized into three different types - forward models, back-
ward models, or hybrid models. The forward models predict
EEG from speech stimuli, while the backward models recon-
struct speech from EEG responses. In many studies, the cor-
relation between the predicted and ground truth signal is con-
sidered as a measure of neural tracking [8]. However, linear
models may be ill-equipped to capture the non-linear nature of
the auditory system. Recently, deep neural networks have been
employed to compare and analyze speech stimuli and EEG re-
sponses. Several studies have shown promising results with
deep learning models for EEG-speech decoding [9, 10, 11, 12].
These advancements in speech decoding from the brain will
also be beneficial for the development of brain-computer inter-

faces(BCIs).
In many of the computational approaches, the speech enve-

lope has been the most commonly used feature [4, 5, 7]. Other
features such as spectrograms [13, 14], phonemes [13], linguis-
tic features [14, 15], and phono-tactics [16] have also been ex-
plored with linear forward/backward models. Lesenfants et al.
[17] demonstrated that combining phonetic and spectrogram
features improves the EEG-based speech reception threshold
(SRT) prediction.

While forward/backward models and correlation tasks were
previously explored, the match mismatch tasks have been re-
cently investigated as an alternative task [18, 11]. Here, the task
is to identify whether a portion of the brain response (EEG) is
related to the speech stimulus that evoked it. In the previous
studies using the match mismatch task, the auditory stimulus
and speech of a fixed duration (5s) are processed through a se-
ries of convolutional and recurrent layers [9, 12, 19].

In this work, we argue that the prior works on speech-EEG
match mismatch tasks are incomplete without considering the
fragmented nature of speech comprehension. While speech and
EEG signals are continuous, the neural tracking of speech sig-
nals is impacted by the linguistic markers of speech [20]. The
most striking of this evidence comes from models of word sur-
prisal [21] with N400 response evoked for unpredictable words
[22, 23]. In the simplest form, we hypothesize that the task of
relating continuous speech with EEG must also include word-
level segmentation information.

We propose a deep learning model to perform match mis-
match classification tasks on variable length inputs using word
boundary information. The model consists of convolutive fea-
ture encoders of both the speech and EEG inputs. Further, the
word segmentation information, obtained by force-aligning the
speech with the text data using a speech recognition system, is
incorporated in the feature outputs through a word-level pooling
operation. The pooled representations are further modelled with
recurrent long short-term memory (LSTM) layers to model the
inter-word context. The final output from the LSTM network
for the speech and EEG streams is used in the match mismatch
classification task.

The major contributions of this paper are:
• Proposing a match mismatch classification model that can in-

corporate word boundary information.
• Proposing a loss function based on Manhattan distance for

the match mismatch task.
• Experimental illustration of the effectiveness of the model,

where the classification performance is significantly im-
proved over the prior works.

• A detailed set of ablation experiments to elicit the impact of
word boundary information in speech EEG matching task.
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Figure 1: Match-mismatch classification task: It is a binary
classification paradigm associating the EEG and speech seg-
ments. The EEG segment (E) and corresponding stimulus sen-
tence (S+) form the positive pair while the same EEG and an-
other (unrelated) sentence (S−) form the negative pair. The
similarity score computation is achieved using the model de-
picted in Figure 2. Here, C.E. denotes the cross entropy loss.

2. Methods
2.1. Dataset

We experiment with a publicly available speech-EEG data set1

released by Broderick et al. [24]. It contains electroencephalo-
graphic (EEG) data recorded from 19 subjects as they listened
to the narrative speech. The subjects listened to a professional
audio-book narration of a well-known work of fiction read by
a single male speaker. The data consists of 20 trials of roughly
the same length, with each trial containing 180s of audio. The
trials preserved the chronology of the storyline without repe-
titions or breaks. The sentence start and end time, and the
word-level segmentation of the speech recordings are provided.
The word segmentation is obtained using a speech recognition-
based aligner [25]. The EEG data were acquired using the 128-
channel BioSemi system at a sampling rate of 512Hz, while the
audio data was played at 16kHz. Overall, the speech-EEG data
amounted to a duration of 19 hours.

2.2. EEG Preprocessing

The CNSP Workshop 2021 guidelines2 served as the basis for
the EEG pre-processing pipeline. It is implemented using the
EEGLAB software [26].The EEG signal is band-pass filtered
between 0.5-32 Hz. Then it is down-sampled to 64Hz. After
removing noisy channels (determined using the channel level
statistics), the EEG channels are re-referenced to the mastoids.
The data from each channel is also normalized by computing
the z-score. The EEG pre-processing code and the codes used
for further analysis discussed in this paper publicly available3.

2.3. Acoustic Feature - Mel Spectrogram

The mel spectrogram of the speech signal is used as the stimulus
feature. The mel spectrogram is computed for each sentence. A
mel filter bank with 28 filters distributed in the mel-scale rang-
ing from 0-8kHz frequency is used. The input audio is pre-
emphasized with a factor of 0.97 before windowing. In order

1https://doi.org/10.5061/dryad.070jc
2https://cnspworkshop.net/resources.html
3https://github.com/iiscleap/EEGspeech-MatchMismatch

to obtain speech features at a sampling frequency of 64Hz, the
spectrogram computation uses a Hamming window function of
the width 31.25ms with half overlap.

2.4. Match-mismatch classification task

The accuracy of a match-mismatch classification task is em-
ployed in this study as a measure of the neural tracking of
speech. Figure 1 illustrates this paradigm in detail. The classifi-
cation model is trained to relate the speech segment to its corre-
sponding EEG response. In this study, the segment is chosen to
be a sentence. We also compare with prior works [9, 27], which
perform this task at the sentence level. The time-synchronized
stimulus of the EEG response segment is the matched speech.
Another sentence from the same trial of data collection is cho-
sen as the mismatched speech. Selecting mismatched samples
from the same trial makes the classification task challenging
enough to encourage the model to learn the stimulus-response
relationships. This sampling approach also avoids the chances
of memorizing the speech features along with its label. The
matched EEG response for these speech sentences is also in-
cluded in the mini-batch training to ensure that memorisation is
disallowed.

2.5. Model architecture

We employed different modelling paradigms to analyze the en-
coding of acoustic and semantic features in EEG signals.

2.5.1. Baseline Model

Recently, Monesi et al. [9] showed that convolutional neural
network (CNN) and long short-term memory (LSTM) based
architectures outperform linear models for modelling the re-
lationship between EEG and speech. This work employed a
match mismatch classification task on fixed duration windows
of speech and their corresponding EEG data. The work also
demonstrated that mel spectrogram features of the speech stim-
ulus provide the best neural tracking performance compared to
other representations like speech envelope, word embedding,
voice activity and phoneme identity [27]. They have performed
the match mismatch task of 5s duration segments with 90%
overlap between successive frames. The prior works [9, 27]
use an angular distance between EEG and speech representa-
tions, average pooling over time, and a sigmoid operation. The
model is trained with binary cross entropy loss [27]. We use
this approach as the baseline setup for the proposed framework.

2.5.2. Proposed match mismatch Model

The speech signal representation S is the mel-spectrogram of
dimension 28 × T , where T denotes the duration of a speech
sentence at 64Hz. Similarly, the EEG data for the same sentence
is denoted as E, and it is of dimension 128× T .

Both the speech and the EEG features are processed
through a parallel neural pipeline, as depicted in Figure 2, with-
out any weight sharing. This sub-network consists of a series of
convolutional layers and LSTM layers. The convolutional lay-
ers implement 1-D and 2-D convolutions with 1× 8 and 16× 9
kernel sizes, respectively. The 1-D and 2-D layers have 8 and
16 kernels, respectively. Further, the 2-D CNN layers also intro-
duce a stride of (1, 3) to further down-sample the feature maps.

The word boundary information available in the dataset is
converted to the equivalent sampling rate (both EEG and audio
representations at 64

3
Hz). The audio and EEG feature maps
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Figure 2: Proposed model for match mismatch task on speech EEG data. The model training paradigm is outlined in Figure 1.

Table 1: Match mismatch classification accuracy of baseline
model [9] for fixed duration sequences. The step size between
adjacent frames is 0.5s.

Frame
Width (sec.)

Test
Accuracy (%)

1 62.21
3 72.41
5 76.12

Table 2: The match-mismatch classification accuracy of speech
stimulus and its EEG responses in sentence level for baseline
[9] and the proposed model. Here, a random speech sentence
was chosen as the mismatch sample for each EEG sentence.

Proposed ModelTest Set Baseline
Model Cos. Euclidean Manhattan

Fold 1 65.39 88.22 93.49 94.02
Fold 2 65.32 88.73 93.68 94.00
Fold 3 64.98 86.54 93.72 93.91

Average 65.23 87.83 93.63 93.97

are average pooled at the word level using the word boundary
information. As a result, for a given sentence, the EEG and
speech branches generate vector representations sampled at the
word level. An LSTM layer models the inter-word context from
these representations. This layer is included in both the stimulus
(speech) and response (EEG) pathways. The last hidden state of
the LSTM layer, of dimension 32, is used as the embedding for
the stimulus/response, denoted as Rs/Re respectively.

We propose the Manhattan distance between the stimulus
and response embeddings. The similarity score is computed as,

d(E,S) = exp(−||Re −Rs||1) (1)

The similarity score for the matched pair (E,S+) and mis-
matched pair (E,S−) are computed. The model, with a dropout
factor of 0.2, is trained using a binary cross-entropy loss, with
[d(E,S+), d(E,S−)] mapped to [1, 0] targets.

2.5.3. Training and Evaluation Setup

The dataset contained recordings from 19 subjects. All the ex-
periments reported in this work perform subject-independent

evaluation (the subjects used in training are not part of the eval-
uation). Further, we report the average results of 3-fold valida-
tion, with classification accuracy as the metric. The experiments
are run with a batch size of 32. The models are trained using
Adam optimizer with a learning rate of 0.001 and weight de-
cay parameter of 0.0001. The models are learned with a binary
cross-entropy loss.

3. Results and Discussion
3.1. Baseline model on fixed duration segments.

The baseline implementation for comparison is the work re-
ported in Monesi et al. [9]. This architecture is an LSTM
model that operates on fixed-duration audio EEG data. All ex-
periments are run for 20 epochs of training. The result of the
model with fixed duration frames is given in Table ??. In order
to increase the amount of training data, we also use 90% overlap
between segments.

3.2. Baseline model at sentence level

The baseline model architecture is implemented for fixed-
duration segments in training and testing. In order to operate
at the sentence level, we have modified the dot product op-
eration as element-wise multiplication followed by an average
pooling. This score is passed through the sigmoid function, and
the model is learned on sentence-level audio-EEG pairs. For
the mismatch condition, a random speech spectrogram is paired
with the EEG to generate the score. These results are reported
in Table 2.

3.3. Proposed model with sentence level processing

The results with the proposed model are also reported in Ta-
ble 2. We compare three different similarity scoring approaches,
i) Angular (Cosine) similarity, ii) Negative L2 distance (Eu-
clidean) and iii) proposed Manhattan similarity (Eq. 1). As
seen in the results, the Euclidean and Manhattan similarity im-
proves over the cosine similarity. The proposed EEG-speech
match-mismatch classifier model reports an average accuracy of
93.97%, which is statistically significantly higher than the base-
line model’s sentence-level performance (Wilcoxon signed-
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Figure 3: This figure shows the match-mismatch classification
accuracy of the proposed model for test fold-1 as a function
of the training epoch for the baseline model and the proposed
approach.

Table 3: Impact of mismatch sample selection strategy on clas-
sification accuracy.

Mismatch Selection
Strategy

Test
Accuracy (%)

Random Sentence 93.97
Next sentence 91.56

rank test, p < 1e− 4). The epoch-wise accuracy for test fold-1
is also illustrated in Figure 3.

3.4. Mismatch sample selection for sentence processing

Previous match-mismatch EEG-speech studies [11, 9] dealt
with fixed-duration speech and EEG segments. Cheveigne et
al. [11] used an unrelated random segment as a mismatched
sample, while studies like [9, 12, 27] employ a neighbouring
segment as the mismatched sample. The sampling of the mis-
matched segments from the same trial ensures that the distribu-
tion of the matched and mismatched segments is similar. We ex-
plore a similar strategy for sentence-level analysis by selecting
the neighbouring sentence in the same trial as the mismatched
sample. Table 3 shows how the mismatch selection strategy af-
fects the classification accuracy. The average accuracy has a
slight degradation when the next sentence is used as the mis-
match sample.

3.5. Importance of accurate word boundaries

We conducted several ablation tests to understand the impact
of the word boundary information. The model is fed with ran-
dom word boundaries in the first set of experiments. Each sen-
tence is assumed to contain a fixed number of words and their
boundaries are chosen at random. The results are reported in
Figure 4. The accuracy improves gradually when the number
of word boundaries is increased, even though they are random.
The accuracy of the experiment using 8 words in a sentence
is 64%, which is significantly lower than the model’s perfor-
mance with accurate boundary information (Wilcoxon signed-
rank test, p < 0.0001). The final experiment shown in Figure 4
assumes a random number of words in each sentence with ran-
dom boundaries, and it provided an accuracy of 60%.

In the second set of experiments, we provide accurate word
boundary information but skip the word boundary information
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Figure 4: Average match-mismatch classification accuracy of
the proposed model for random word boundaries.

Table 4: Accuracy (%) in match mismatch task for varying lev-
els of word-boundary information. Here, Skip − n denotes
removing every nth word boundary information in the model.

Test set Skip-2 Skip-3 Skip-4 Skip-5
Fold 1 82.45 88.96 90.43 90.64
Fold 2 81.86 88.77 90.32 90.28
Fold 3 82.60 88.79 90.30 90.01
Average 82.30 88.84 90.35 90.31

at every n-th word. These results are reported in Table 4. For
example, Skip-3 in this table corresponds to removing the word
boundary inputs at every 3-rd entry. The pooling is done with
the rest of the available word boundaries for these experiments.
As seen in Table 4, the results with a higher value of n (of skip-
n experiments), approach the setting without any removal (ac-
curacy of 93.97%). It is also noteworthy that, even with the
Skip-2 setting (word boundary information available for every
alternate word), the performance is 82.3%, significantly better
than the baseline model. This study also demonstrates that accu-
rate word boundary information significantly impacts the match
mismatch classification, which further illustrates that the EEG
signal encodes the word level tracking of speech.

4. Conclusions
In this paper, we have attempted to validate the hypothesis that
speech comprehension in the brain is segmented at the word-
level in the EEG responses to continuous speech. For this task,
we developed a deep neural network model consisting of con-
volutional encoders, word-level aggregators and recurrent lay-
ers. A novel loss function for this task based on Manhattan
similarity is also proposed. The proposed model validated the
hypothesis by improving the accuracy of match-mismatch clas-
sification of speech and EEG responses at the sentence level.
The incorporation of word boundary information yields statisti-
cally significant improvements compared to the baseline model,
demonstrating the importance of this information in the neu-
ral tracking of speech. Moreover, the proposed model handles
variable length inputs. Overall, this model can have potential
applications in various domains, including speech recognition,
brain-computer interfaces, and cognitive neuroscience. Future
research could explore this model’s extension to incorporate
multi-modal inputs in the form of textual data in addition to
the speech spectrogram.
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