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Abstract
Most research on task oriented dialog modeling is based on
written text input. However, practical dialog systems often use
spoken input. Typically, input speech is converted into text us-
ing an Automatic Speech Recognition (ASR) systems, which
are error-prone. Furthermore, most systems don’t address the
differences in written and spoken language (e.g., disfluencies).
The research on this topic is stymied by the lack of a public
corpus. Motivated by these considerations, our goal in hosting
the speech-aware dialog state tracking challenge was to create
a public corpus or task which can be used to investigate the
performance gap between the written and spoken forms of in-
put, develop models that could alleviate this gap, and establish
whether Text-to-Speech-based (TTS) systems is a reasonable
surrogate to the more-labor intensive human data collection. We
created and released three spoken versions of the popular written-
domain MultiWoz task – (a) TTS-Verbatim: written user inputs
were converted into speech waveforms using a TTS system, (b)
Human-Verbatim: humans spoke the user inputs verbatim, and
(c) Human-paraphrased: humans paraphrased the user inputs.
Additionally, we provided different forms of ASR output to en-
courage wider participation from teams that may not have access
to state-of-the-art ASR systems. These included ASR transcripts,
word time stamps, and latent representations of the audio (audio
encoder outputs). In this paper, we describe the corpus, report
results from participating teams, provide preliminary analyses
of their results, and summarize the current state-of-the-art in this
domain.

1. Introduction
In recent years, Automatic Speech Recognition (ASR) and Natu-
ral Language Processing (NLP) models have converged to utilize
common components like Transformers and encoder/decoder
modules. They increasingly rely on large amounts of data, large
model sizes and large amounts of compute resources. This
is a substantial departure from a previous era when ASR and
NLP utilized different modeling architectures, chosen to inject
domain-specific knowledge and constraints. This shift to a com-
mon paradigm has stimulated research in fusing audio and text
modalities to substantially improve performance in tasks such as
audio intent classification and speech-to-speech translation. The
fusion of modalities in many cases allows the direct optimization
of the end-task, overcoming the hurdles of the older cascaded
approaches that often led to accumulation of errors.

Despite the general trend to develop end-to-end models for
various tasks, spoken dialog systems stick out as a sore thumb.
Most practical systems utilize a cascaded approach where the out-
put of a general ASR system is fed into a dialog model trained

separately on written domain. This mismatch between writ-
ten and spoken inputs to the dialog models is not well-studied,
largely due to the lack of a public task with spoken user inputs.

Research into combined audio-text models is limited by the
lack of paired data. While the paired data requirement can be
relaxed for training data via un- or self-supervised training tech-
niques, test sets with paired data are crucial for model evaluation.
In addition to an evaluation task, a training set with spoken input
would also be helpful in quantifying the gains from supervised
learning and recent advances in self-supervised learning.

The focus of our effort was to bring most benefit to the com-
munity with the limited resources available. While a Wizard-
of-Oz style data collection in spoken domain would have been
ideal to fully investigate all the phenomena of spoken domain,
that would be extremely labor-intensive especially in annotat-
ing the dialog states and was beyond the scope of our effort.
Instead, we chose to create a spoken version of a well-studied
written-domain task, the MultiWoz task. One advantage of this
approach was that we could directly compare the performance
of the spoken version with the written domain.

In the Speech-Aware DSTC11 challenge, participants are
asked to infer the dialog states from the sequence of agent
(text-input) and user (audio-input) turns. We evaluated the per-
formance on three versions of audio inputs – TTS-Verbatim,
Human-Verbatim (humans speaking the written user inputs), and
Human-Paraphrased (humans paraphrasing the written user in-
puts). Aside from the audio-inputs, we provided audio encodings
and transcripts from a state-of-the-art ASR system trained on
33k hours of People’s Speech corpus to encourage participation
from teams that did not have an easy access to ASR systems.

In the course of developing this challenge, we developed
a cascaded baseline system with data augmentation and report
performances on a few variants of cascaded systems. In the
process, we uncovered a bias in the MultiWoz evaluation task,
the slot values in the evaluation set have a substantial overlap
with those of the training set. To address this bias, we created a
new version of the MultiWoz evaluation set, the dev-dsct11 and
eval-dstc11. We observed that the new task surfaces many of the
challenges in practical spoken dialog systems associated with
mismatch in modalities, inability to recover from ASR errors,
and more generally difficulty of extracting semantically relevant
information from audio signals.

2. Related Work
Motivated by similar consideration as ours, [1] organized a DST
Challenge in 2021 where they created a task using spoken human-
human dialogs on tourist information in San Francisco for three
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target domains: hotel, restaurant, and attraction. One of the
serious limitations of the challenge was that the audio data was
not released, only the ASR transcripts. The transcripts had an
error rate of about 26.25% which is significantly higher than
the average performance of most state-of-the-art ASR systems.
The larger focus of their effort was on evaluating correctness of
detecting knowledge-seeking turns, identifying the knowledge
snippets and knowledge supplied in the generated responses.
Prior to this effort, there have been much smaller efforts with
fewer domains and dialogs in DSTC2 and DSTC3 [2, 3]. Here
again the organizers only provided ASR transcripts with error
rates in high 20s and low 30s, which limited the utility of the
corpus as the ASR systems improved over time.

Meanwhile considerable progress has been achieved in im-
proving the naturalness of dialog systems, for example, with
chat-bots like Meena [4], raising expectations of interacting with
dialog systems using spoken language. Similarly, the conver-
gence of model architectures for ASR and NLP has stimulated
research in creating joint audio-text encoders that could poten-
tially compensate for ASR errors and other spoken language
phenomena [5, 6, 7, 8, 9, 10, 11], where they propose different
approaches to align the speech input (frames, phones, utterances)
to the corresponding text units. However, none of them have
been evaluated on dialog models due to the lack of a dialog
task and corpus with audio input. We hope the task and corpus
released in this work will bridge this gap along with other recent
speech understanding tasks such as superb and slurp [12, 13]

3. Data
We chose to create a spoken version of MultiWoz [14] (2.1
version) so we could directly compare the written and spoken
versions and reuse the annotations of dialog state labels, avoid-
ing the labor-intensive process of annotating reference labels.
Our corpus is freely available at https://dstc11.dstc.
community.

3.1. Redesigned DSTC11 Evaluation Sets

Before launching into the data collection and in the process of
developing baseline systems, we noticed that there is a substan-
tial overlap in slot values between the training and evaluation
sets, leading to overestimation of performance of the models
that memorize the slot values, as reported elsewhere [15]. To
illustrate the issue, we probed an existing DST model with input
whose slot values were replaced with other viable values (e.g.,
cambridge to new york, ely to dublin), 17:43 to 17:41 and 19:00
to 19:12). We chose a state-of-the-art model on the task with
JGA of 55.4% [16]. The model ignores the new slot values and
regurgitates the original slot values memorized from the training
data, as shown in the Table 1.

Text Input Text Output
i want to go to new york dest=cambridge
i want to go to dublin dest=ely
train leaving at 17:41 time=17:43
train leaving at 19:12 time=19:00

Table 1: Examples of model outputting memorized values.

This overlap in slot values between the training and evalu-
ation sets of MultiWoz will mask the effect of misrecognition
of the slot values by ASR systems in a practical spoken dia-
log system. For a fair evaluation of the models, we redesigned

the MultiWoz evaluation sets to replace the slot values in the
evaluation sets with new slot values as described below. The
replacements were performed at the dialog level to maintain
consistency across turns.

1. Location Names: The destination and departure cities for
trains and buses were replaced with randomly sampled city
names from 12655 cities in the United States.

2. Hotel Names: Hotel names were replaced with random names
sampled from 1562 hotels in the United States.

3. Restaurant Names: Restaurant names were replaced by sam-
pling from 214 restaurants in New York City.

4. Time Slots: Timestamps were offset by a random value across
all the times mentioned in the dialog.

We measured the impact of the redesigned evaluation sets,
henceforth referred to as dev-dstc11 and test-dstc11, using two
dialog models – a seq-to-seq model [16] and a model that utilizes
the power of large language model by fine-tuning the prefix
encoding with dialog-specific instructions [17]. The second
model has three variants – D3ST-base, D3ST-large and D3ST-
XXL – related to the size of the underlying T5x large language
model [18]. The results, shown in the Table 2, confirms our
overestimation of the original MultiWoz evaluation sets. The
actual performance is almost 50% worse than reported on the
original evaluation sets for most models with the exception of
D3ST-XXL.

Model org. Dev Dev-DSTC11
seq2seq 55.4 20.8
D3ST-base 54.2 22.0
D3ST-large 54.5 25.2
D3ST-xxl 57.8 43.1

Table 2: Performance gap, in JGA, between biased (dev) and
unbiased (dev-dstc11) with the same model.

The memorization of the slot values completely distorts the
effect of ASR errors on the downstream dialog models and paints
an overly rosy picture. We illustrate this with a simple cascaded
baseline where an ASR system transcribes the input speech into
written form which is fed into a seq-to-seq dialog model [16].
In the Table 3 we compare the performance degradation from
switching from written to spoken input and then retraining the
seq-to-seq model on the ASR transcripts. According to the
performance on the original dev set, the degradation from written
to ASR transcripts is 58.1% to 47.2%. Furthermore, most of the
degradation is recovered by retraining on the ASR transcripts.
Both these results are incorrect and misleading as will show in
the Section 5.3, training on ASR output is not nearly as effective
as the results in the table suggests.

Train Data Test Data JGA
Written Written 58.1
Written Spoken/ASR 47.2
Spoken/ASR Spoken/ASR 56.0

Table 3: Misleading performance of seq-to-seq model on written
and ASR transcripts.

3.2. Text-to-Speech Version

One of the questions we were interested in understanding was
whether TTS is a good substitute for speech collected from hu-
mans. For answering this question, we generated TTS-Verbatim,
a TTS version of the evaluation test and training sets using the
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system described in [19], a system that represents phonemes and
graphemes to represent input text. Additionally, for training data,
we generated four versions of the training data, each correspond-
ing to a different TTS speaker. There was no overlap between
the speakers in the training and evaluation sets.

3.3. Human Data Collection

We focused our data collection on the user turns since the agent
turns are already available to any practical dialog system. The
data collection was performed via Amazon Mechanical Turk
and consisted of two versions – Human-Verbatim and Human-
Paraphrased. Crowd-workers were presented a full dialog in
text including both user and agent turns. In the verbatim version,
the workers were instructed to utter the user turns verbatim as
naturally as possible, one at a time till the end of the dialog. In the
paraphrased version, the workers were instructed to paraphrase
the user turn preserving the semantic meaning and the entities
(e.g., names, times). After they finished the dialog, the workers
transcribed their own paraphrased utterances.

The quality of the recordings were measured and only those
above certain quality were retained. The pertinent factors in-
clude: 1) missing audio, 2) incomplete dialog, 3) unintelligible
speech, 4) high background noise, 5) speakers uttering verba-
tim when they should have paraphrased, and 6) speakers not
transcribing their paraphrased utterance.

We developed objective measures to perform quality control
in bulk. The missing audio and incomplete dialogs were detected
programmatically. To filter out utterances with unintelligible
speech and high background noise, we transcribed the collected
user utterances with an ASR system (for details of the system
see Section 5) and measured the accuracy with respect to the
corresponding transcripts. Since insertions may occur due to
disfluencies, we used deletions as a stronger quality indicator and
used a threshold of 25%. For the paraphrased version we used
additional criteria: 1) paraphrased utterances had at least 60%
as many words as verbatim, 2) the paraphrased version differed
from the verbatim version by at least 45% as indicated by the
WER between recognized words and the written user prompt,
and 3) less than 30% WER with respect to the crowd-worker
generated transcripts.

4. Challenge Task and Evaluation
The main task in the DSTC11 Challenge is to infer the dialog
states correctly from the audio inputs that were provided cor-
responding to the redesigned MultiWoz test set, redesigned as
described in Section 3.1. For ablation studies, the participants
were required to submit their results for three conditions: TTS-
Verbatim, Human-Verbatim and Human-paraphrased, which
were collected as described in Section 3.2 and 3.3. The partici-
pants were free to use their own ASR system or the outputs pro-
vided from our baseline ASR system, described in Section 5.1.

The performance in the challenge is measured using the
standard Joint Goal Accuracy (JGA) as a primary metric and
Slot Error Rate (SER) as a secondary metric for fine-grained
comparisons. In the literature, results are often difficult to com-
pare since research groups apply their own output normalization
before scoring the results. To sidestep the resulting confusion,
this challenge is evaluated using standard evaluation tool pub-
lished on GitHub [20]. The participants were allowed to utilize
any publicly available data or checkpoints, but no private data to

allow fair comparisons. They were allowed to augment data and
no restrictions were imposed on model sizes or computational
costs.

5. Baseline
5.1. ASR and Related Outputs

We provided the output of a baseline ASR system to reduce the
barrier for participation by teams which didn’t have ASR systems
available to them. We trained an RNN-T [21, 22] ASR model
on the PeopleSpeech public corpus [23] of approx. 32,000 hours
of audio data. The encoder consists of 16 Transformer-XL [24]
layers, and the language model (decoder) is a single LSTM layer,
altogether a 220m parameter model. The performance of the
model on the MultiWoz evaluation sets are reported in Table 4.

TTS-Verbatim Human-Verbatim
dev-dstc11 8.1(5.7/0.3/2.1) 11.9(7.7/2.7/1.5)
test-dstc11 8.2(5.7/0.3/2.1) 13.0(8.2/3.4/1.5)

Table 4: Baseline ASR performance WER(Sub/Del/Ins)

The following outputs are available as part of the DSTC11
challenge corpus.

1. Audio Waveforms (16Khz/16-bit PCM): This allows re-
searchers to investigate DST models that directly operate on
audio such as end-to-end systems.

2. Audio Encodings (75ms frame rate, 1024-dim): These are the
output activation from the last Transformer layer in the audio
encoder. The audio encoder reduces the logmel frame rate
of 25ms to 75ms. These encodings are provided to support
research in loosely-coupled ASR-DST cascaded systems.

3. ASR Hypotheses with Time Alignment: The ASR recognition
outputs are provided to support research in different cascaded
ASR-DST systems. Time alignments allow teams to pinpoint
the location of recognized tokens in the audio encodings. Note,
due the nature of RNN-T, multiple output tokens (words) can
correspond to the same audio frame.

Typical recognition errors include time formatting issues,
spoken single-digit numbers, split words, and more general mis-
spelled content words, where the last category is very relevant
for DST purposes.

5.2. Data Augmentation

Data augmentation is a common technique to improve accuracy
and robustness. Since our preliminary results in Table 2 un-
earthed problems related to memorization, we felt the need to
incorporate data augmentation into our baseline systems. We
created new versions of user responses for training data by re-
placing slot values with randomly picked city names, time offsets
and restaurant names, as described in Section 3.1. The new slot
names were drawn from a different list than the ones used for
generating the redesigned evaluation sets. In all, we generated
about 100x training data.

5.3. Cascaded ASR-DST System

For a baseline, we created a cascaded ASR-DST system where
the transcripts from the ASR model in Section 5.1 were fed
as input to the D3ST model [17], a seq-to-seq model [25, 26],
where the input to this model contains a prompt which describes
slot names in short natural language descriptions along with
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potential values. Results are shown in table 5.

Test Data Training Data
Text (Ref) ASR Hyp
1x 100x 1x 100x

Text 43.1 52.8 33.9 43.0
TTS-Verbatim 27.3 32.1 26.8 38.4
H-Verbatim 23.6 27.9 23.7 31.8
H-Paraphrased 21.8 26.1 21.9 30.9
Table 5: ASR-D3ST xxl cascaded model (JGA)

We want to outline some observations from these results:

1. TTS (TTS-Verbatim) shows a degradation with respect to writ-
ten version. However, the degradation is larger with Human-
Verbatim (41.0% vs. 33.5% JGA), confirming our suspicion
that we cannot rely on TTS as a surrogate for human speech.

2. Surprisingly, the drop in performance from Human-Verbatim
to Human-Paraphrased is not very large. This is not because
the two versions are similar since quality checks described
in Section 3.3 assures us that the paraphrased version is suffi-
ciently different from verbatim version.

3. Scaling the D3ST model from D3ST-Large (3B params) to
D3ST-XXL (11B params) has substantial impact on perfor-
mance (24.8% vs 33.5% JGA). This raises a question of fair-
ness since teams may not have resources to work with larger
model sizes. Nonetheless, we did find examples in results
provided by participants were smaller models were able to
outperform larger models, see Section 6 for details.

4. Training DST models with ASR hypotheses is simple and
improves the performance substantially from 28.2% to 33.5%
even when the training data is based on TTS.

5. Data augmentation gives consistent gains across all conditions.

6. Results
We received 11 submissions from 6 teams and the results are
shown in figure 1. The full set of numbers are also avail-
able in the link under the DSTC11 Challenge website https:
//dstc11.dstc.community. We provide a high level
overview of the results, but refer to the team’s system descrip-
tions for details. While we provided data to build direct audio-
to-dst and tightly coupled models, all teams chose a cascaded
approach with separately trained ASR and DST models. Many
teams employed an explicit ASR error correction model and
re-trained their DST models on ASR hypotheses together with
various forms of TTS-based data augmentation. Within this gen-
eral approach teams experimented with several variations and as
a result the performance across submissions vary substantially.
The highest performing submission obtains a JGA of 37.9%
while the lowest performance is at 18.2%.

6.1. Alternative ASR models

While we provided ASR output with our baseline ASR system,
described in Section 5.1 based on PeopleSpeech corpus, three
submissions used Whisper instead [27]. We compared the two
ASR models to tease apart the differences. As reported in Ta-
ble 6, not surprisingly, we found that Whisper transcribes the
evaluation sets more accurately than our baseline model (see
Table 4) since it is trained on a magnitude order more data. We
evaluated Whisper in the cascaded ASR-DST system with two
models, one trained on 100x augmented written text and one

F-p F-s C-p A-s C-s D-s B-p D-p A-p B-s E-p
0

10

20

30

40

tts-verbatim
human-verbatim
human-paraphrased

Figure 1: Joint Goal Accuracy (JGA) of team’s submissions

trained on Whisper transcripts of the TTS version of the same
training data. The results shown in Table 7 clearly demonstrate
that the improvements in transcription accuracy translates to
improvement in DST accuracy.

TTS-Verbatim Human-Verbatim
dev-dstc11 4.8(3.8/0.6/0.4) 8.5(5.8/1.4/1.4)
test-dstc11 4.6(3.7/0.6/0.3) 8.9(6.1/1.5/1.3)

Table 6: ASR Performance of Whisper on evaluation sets.

Test Data 100x Training Data
Text (Ref) ASR Hyp

Text 52.7 45.3
TTS-Verbatim 35.6 41.3
H-Verbatim 32.3 35.5
H-Paraphrased 30.9 34.3

Table 7: JGA of cascaded Whisper trained D3ST-XXL.

7. Conclusions
In this paper, we describe a new corpus for stimulating research
in modeling spoken dialogs that builds on popular written dia-
log corpus, MultiWoz. Releasing a spoken version of the same
evaluation set allows researchers to study and bridge the per-
formance gap between written and spoken dialog models. We
observed that there is substantial overlap between the slot val-
ues in the training and evaluation sets of the original MultiWoz
corpus and redesigned the evaluation sets by sampling new non-
overlapping slot values and show that the new sets captures
the weakness of the written dialog models better. We released
three versions of the task – TTS-Verbatim, Human-Verbatim and
Human-Paraphrased.

While the performance improves with model size and data
augmentation, even the best models show substantial drop in
performance when switching from written version to the spo-
ken version (53.8% to 26.1% JGA). Retraining the D3ST-XXL
model on the ASR hypotheses, improves the performance to
30.9% JGA but still leaves substantial ground to be covered. We
report the results of 11 submissions from the DSTC11 Challenge.
The dominant paradigm across teams was to rely on large lan-
guage models for DST. Several submissions inserted ASR error
correction modules of different complexities.

One area of research that is not well explored is better uti-
lization of the latent representations of the audio encoder in the
ASR in the downstream DST models. Similarly, we hope the
release of the audio and the audio encoders outputs will allow
researchers to evaluate the power of joint audio-text encoders on
dialog tasks.
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