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Abstract
The acoustic features of continuous speech, such as pitch (F0)
and formant frequencies (F1, F2) have been utilized for gen-
der classification. However, non-speech signals including vo-
cal breath sounds have not been explored due to the absence
of gender-specific acoustic features. This study investigates if
vocal breath sounds carry gender information and if they can
be used for automatic gender classification. The study ex-
amines the use of data-driven and knowledge-based features
from breath sounds, classifier complexity, and the importance
of breath signal segment location and duration. Results from
experiments on 54 minutes of male and 52 minutes of female
breath sounds demonstrate that classifiers with low-complexity
and knowledge-based features (MFCC statistics) perform sim-
ilarly to high-complexity classifiers with data-driven features.
Breath segments of around 3 seconds are found to be the most
suitable choice regardless of location, eliminating the need for
breath cycle boundary marking.
Index Terms: Vocal Breath Sound Signals, Automatic Gender
Classification, CNN-LSTM, Mel-Spectrogram, MFCC Statis-
tics

1. Introduction
Humans produce different sounds of which some are used
for communication, like speech, whereas others are for non-
communication purposes such as cough, breath sounds, etc.
The sounds used for communication reveal speaker character-
istics such as their emotions, gender, age, etc [1]. Speech sig-
nals such as continuous speech are known to have acoustic fea-
tures such as pitch(F0), and formant frequencies(F1, F2) which
can be used for gender classification[2][3][4]. Usually, males
have lower pitch and formant frequencies than females dur-
ing continuous speech[5][6]. A considerable amount of work
uses voiced speech signals such as continuous speech to ex-
ploit the difference in the acoustic features for gender clas-
sification. For example, S Bhukya[7] used articulatory cues
such as pitch(F0) and formant frequencies(F1, F2, F3) extracted
from continuous speech samples to develop a gender classifi-
cation model to improve Automatic Speech Recognition(ASR)
performance. Similar works are found in the literature where
pitch(F0) information is used to develop gender classification
models [8][9][10]. Anna V Kuchebo used Mel Frequency Cep-
stral Coefficients(MFCC) and spectral contrast on continuous
speech to classify gender[11]. S Levitan et al [12] used the com-
bination of pitch information(F0) and MFCC to classify gender
using continuous speech samples. This work was further used
by Kabil et al [13] who used Convolutional Neural Networks
(CNN) for gender classification on raw speech using MFCC
only. Rangga et al [14] used a Bidirectional Long Short Term
Memory network to classify gender using a voiced dataset. All

these works use either spontaneous speech and/or other types of
voice speech signals.

This study aims to explore whether vocal breath sound sig-
nals contain gender-related information and, if so, how this in-
formation can be extracted and utilized for the purpose of auto-
mated gender classification. It should be noted that the purpose
of this study is not to directly compare our approach with exist-
ing speech-based gender classification models. Rather, our fo-
cus is on investigating the potential of using vocal breath sounds
as a source of gender cues for gender classification.

The development of a gender classification model based on
vocal breath sounds can be an important prerequisite for the im-
plementation of automatic Pulmonary Function Test (PFT) vari-
able prediction systems that rely solely on breath sounds. As
lung size and capacity vary between males and females of the
same age and height, PFT parameters such as Forced Vital Ca-
pacity (FVC), Total Lung Capacity (TLC), and Forced Expira-
tory Volume in one second (FEV1) may exhibit higher values in
males than in females[15][16][17]. FVC reflects the maximum
amount of air that an individual can forcefully and completely
exhale after taking a deep breath, while FEV1 corresponds to
the amount of air that an individual can forcefully exhale in one
second after taking a deep breath. These gender-specific dif-
ferences in PFT parameters can be accounted for by the vocal
breath sound-based gender classification model. These classifi-
cations can then be utilized by PFT variable prediction systems
where gender information can increase accuracy and reliability.
Our hypothesis is that vocal breath sound signals contain gen-
der cues that can be learned by a neural network and used for
automatic gender classification.

It should be re-noted that goal of this work is not to compare
vocal breath sound-based gender classification with speech-
based ones. Rather investigate five questions: 1) Are gender
cues present in the mel-spectrogram of the breath cycle? 2) Do
MFCC statistics features encode spectral characteristics of gen-
der which can be used for automatic gender classification with
reduced parameters and training time? 3) What is the role of
breath boundaries in gender classification? 4) What is the effect
of the number of frames in a breath chunk on gender classifica-
tion accuracy? Finally, 5) What is the effect of taking random
frames from the entire breath audio on gender classification?

To investigate the 1st question, we employed a 2-D Con-
volutional Neural Network (CNN) to learn the spectro-temporal
features present in the mel-spectrogram of a breath cycle for the
purpose of gender classification. A breath cycle is defined as a
single inhalation followed by exhalation by a subject. Due to
the complexity of this task and the large number of parameters
involved, the resulting model requires significant computational
resources and training time.
In order to address the 2nd question, we performed calcula-
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tions on four 13-feature MFCC statistics - mean, median, mode,
and standard deviation, resulting in a total of 52(=13x4) fea-
tures. These features were computed for a complete breath
cycle, utilizing breath boundaries. We employed a 1-D CNN
LSTM (Long Short Term Memory) model to acquire infor-
mation from the 52 MFCC statistics for gender classification.
While CNN layer extracts features across a complete breath cy-
cle, LSTM layer aids in sequence prediction and classification.
The model effectively assimilated cues from the MFCC statis-
tics, with a reduced number of parameters and training time,
representing a knowledge-based model with low complexity.
To investigate 3rd question, we extracted segments of breath
sound with varying lengths from the complete audio recording
of each subject’s breathing (which consisted of multiple breath
cycles) and subsequently trained 1-D CNN LSTM models on
these segments. Our aim was to compare the performance of
these models with the performance of the model trained specif-
ically on breath cycle boundaries.
To address the 4th question we selected a random sample of
frames from the most effective chunk identified in the 3rd ques-
tion, in order to examine accuracy trends. In instances where
the model’s accuracy decreased for specific frame numbers, it
indicated that the model was unable to utilize MFCC statistical
features to discern gender cues for classification.
Finally, for the 5th question, the 1-D CNN LSTM model was
trained on 100 randomly selected frames from the entire breath
audio file. As the model was able to access the MFCC statistics
across all frames from the entire breath recording, we hypothe-
sized that the accuracy of this experiment would surpass that of
both the entire breath cycle and the continuous chunks utilized
in the second and third questions respectively. This experiment
aimed to improve model generalization by relaxing experimen-
tal conditions across the entire breath recording.

2. Dataset
The data used for this study consists of audio files pertaining
to 106 subjects (55 Male, 51 Female). Each audio file has
vocal breath, followed by cough, sustained vowels: /A:/, /i:/,
/u:/, /O:/, /e:/, and sustained fricatives: /s:/, /z:/. The au-
dio data was recorded with a sampling rate of 44.1 kHz using
a Zoom H6 microphone at a hospital in non-laboratory condi-
tions with ambient and background noise, under the guidance
of a pulmonologist. The microphone was placed approximately
10 cm away from the subject’s mouth. The data was collected
over a span of 4 years, from 2016 to 2019, and was used in
the study of breath characteristics of healthy (control) and asth-
matic subjects[18][19]. The audio data was labeled to indicate
boundaries of inhalation, exhalation, and breath cycles. For this
study, the breath segments of the subjects were used.

3. Experiments and Results
Inhale and exhale parts of the breath cycle are boundary labeled
along with the entire breath cycle as shown in Fig.1.

Experimental Setup: Mel-spectrogram images and 52
MFCC statistics pertaining to 106 subjects are divided into 5
gender-balanced folds with 21 subjects in each fold except fold
5 which has 22 subjects. Out of 5 folds, one fold is used for test-
ing. The remaining 4 folds contain 85 subjects to be used for
training and validation. With the fold boundaries held in place,
4 males and 4 females (randomly chosen) are used for valida-
tion after the model trains on the 77 subjects. This is repeated
five times in a five-fold cross-validation setting where each fold
is tested in a round-robin fashion. There is no overlap between

Figure 1: Breath cycle annotation scheme

any of the sets. The models, 2-D CNN, and 1-D CNN LSTM
are fit on the train set, fold-wise and hyperparameter tuned on
the validation set with early stopping criteria on model loss with
the patience of 40 epochs and tested on the test set.

Evaluation Metrics : The evaluation metrics used in this
study is segment-level accuracy, F1 score, precision, and re-
call. Predicted gender labels for each segment in the test set are
compared with the true label or the ground truth to calculate the
above-mentioned metrics.

Experimental road-map : The experimental road-map of
this paper is shown in Fig.2.

Figure 2: Experimental pipeline to address the five questions

3.1. Gender decoding using 2-D CNN on mel-spectrogram
To perform gender classification using mel-spectrogram im-
ages, we utilized a fully connected 2-D CNN with the architec-
ture displayed in Fig. 3. We standardized the extracted breath
segments of each subject by zero-padding them to the maximum
length of breath signal present in the dataset. We then computed
the mel-spectrogram of these extracted breath cycles using the
Librosa Speech Processing toolkit[20] with 128 mel-filters (n-
mels), a window length of 20ms, and a hop length of 10ms.
Subsequently, we converted these spectrograms into RGB im-
ages with a dimension of 128x128. The confusion matrix was
computed fold-wise and average accuracy was calculated to be
0.77±0.07 as shown in Table 1 along with other metrics.

The 2-D CNN model is a complex model in terms of pa-
rameters totaling 2,193,729, out of which learnable and non-
learnable parameters are 2,192,321 and 1,408 respectively. The
average training time for the 2-D CNN model was 5.4 seconds
per epoch across all 5 folds.

3.2. Gender decoding using 1-D CNN LSTM Model
As previously mentioned, while the 2-D CNN model can learn
the spectro-temporal features of the mel-spectrogram, it is a
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Figure 3: Architecture of the 2-D CNN model used to address
Question 1.

Table 1: Confusion Matrices of the 2-D CNN model with mel-
spectrogram. Labels in red indicate true labels whereas blue
indicate predicted labels.

F1 F2 F3 F4 F5
M F M F M F M F M F

M 74 12 57 45 72 18 77 18 111 26
F 16 66 23 75 19 72 24 75 36 82

acc 0.83 0.66 0.80 0.78 0.76
F1 0.83 0.69 0.80 0.78 0.73

prec 0.85 0.63 0.80 0.81 0.76
recall 0.80 0.77 0.79 0.76 0.69
Acc: 0.77 ± 0.6, F1: 0.76 ± 0.05, Precision: 0.77 ± 0.08, Recall: 0.76 ± 0.04

2D CNN on mel spectrogram Images

complex classifier. Therefore, we employed a 1-D CNN LSTM
model to reduce the classifier complexity in terms of total pa-
rameters and training time per epoch, while maintaining clas-
sification accuracy. Our fully connected 1-D CNN-LSTM net-
work, architecture of which is shown in Fig.4, comprises CNN
layer(s) for feature extraction on the input data, which, in our
study, are 52 MFCC statistics calculated across the breath cycle,
followed by Long Short Term Memory (LSTM) layers for se-
quence prediction/classification. To explore the extent to which
the vocal breath signals encode gender information, we treated
each of the 52 MFCC statistics as individual time stamps, al-
lowing the model to learn hidden spectral characteristics across
feature vectors.
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Figure 4: Architecture of 1-D CNN LSTM model to address
Question(s) 2, 3, 4 and 5).

Confusion matrix was computed fold wise and average ac-
curacy was calculated to be 0.76±0.12 as shown in Table 2 along
with F1 Score, Precision, and Recall.

The 1-D CNN LSTM model is significantly lighter com-
pared to the 2-D CNN model discussed in Section 3.1. It com-
prises only 2,138 trainable parameters out of a total of 2164 pa-
rameters and has an average training time of 200ms per epoch

across all five folds. By adopting the 1-D CNN LSTM architec-
ture for gender cue learning across 52 MFCC statistical features,
we were able to reduce model complexity in terms of total pa-
rameters and training time without compromising classification
accuracy substantially.

Table 2: Confusion Matrices of the 1-D CNN LSTM model with
52 MFCC Stats. Labels in red indicate true labels whereas blue
indicate predicted labels.

F1 F2 F3 F4 F5
M F M F M F M F M F

M 65 21 47 55 90 1 80 16 117 20
F 21 62 34 64 25 66 20 79 21 97

acc 0.75 0.555 0.86 0.82 0.84
F1 0.75 0.59 0.84 0.81 0.83

prec 0.75 0.54 0.99 0.83 0.83
recall 0.75 0.65 0.73 0.80 0.82
Acc: 0.76±0.12, F1: 076±0.10, Precision: 0.79±0.16, Recall: 0.75±0.07

1-D CNN LSTM on MFCC Stats of entire breath cycle

3.3. Role of breath boundary in gender classification

To investigate the relative importance of breath boundaries in
gender classification, we analyzed chunks of various durations
extracted from breath audio. The dataset had an average breath
cycle duration of 3.13 seconds, therefore we extracted chunks
of ±1 sec and ±2 sec from the average duration, resulting in
chunk lengths of 1, 2, 3, 4, and 5 seconds. Across these chunks,
we calculated 52 MFCC statistics, taking care to use the same
number of segments for each chunk length as there were breath
cycles for each subject. We then retrained the 1-D CNN LSTM
model with these MFCC statistics. The resulting fold-wise con-
fusion matrices and evaluation metrics are presented in Table 3,
ensuring experimental uniformity.

Our results indicate that gender classification using 3-
second breath chunks had the highest chunk-level accuracy of
0.77±0.11, which is a 0.1 improvement from the breath cycle
experiment. The 5-second breath chunks had a similar perfor-
mance to the breath cycle experiment, with a chunk-level accu-
racy of 0.76±0.11.

3.4. Effect of number of frames in a chunk on classification
accuracy

To understand whether there may be any redundancies in the
frames of a chunk, we randomly chose 10, 50, 100, and 200
frames for the 3-second breath chunk (best performing) which
has 300 frames. The model was re-trained again on these ran-
domly chosen frames. Table 4 summarises the effect of chosen
frames from within the 3-sec chunk on model accuracy.
3.5. Random frame-based classification

In this section, in contrast to subsection 3.3, we randomly take
100 frames(discontinuous) from the entire breath recording of
the subject. The number of segments of 100 frames taken is
equal to the number of breath cycles of the subject to maintain
uniformity similar to subsection 3.3. This increases the span of
audio frames that are used to train the 1-D CNN LSTM model.
The chunk-level confusion matrices and accuracy of each fold
are shown in Table 5 along with other metrics.

We conclude that N segments of 100 frames taken ran-
domly from the entire breath recording, where N is the number
of breath cycles of the subject, increases the sample space of
frames on which MFCC statistics are calculated. This improves
the model accuracy compared to the case where MFCC statis-
tics are calculated across continuous frames to 0.80±0.10 from
0.77±0.11(3-sec chunk) and 0.76±0.12(entire breath cycle).
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Table 3: Confusion Matrices of 1-D CNN LSTM model with
different chunks. Labels in red indicate true labels whereas blue
indicates predicted labels.

F1 F2 F3 F4 F5
M F M F M F M F M F

M 67 19 41 61 73 17 78 17 113 24
F 16 66 25 73 24 67 22 77 26 92

acc 0.79 0.57 0.77 0.80 0.80
F1 0.79 0.63 0.77 0.80 0.79

prec 0.78 0.54 0.80 0.82 0.79
recall 0.80 0.74 0.74 0.78 0.78
Acc: 0.75±0.10, F1: 0.75±0.07, Precision: 0.75±0.11, Recall: 0.77±0.03

1-D CNN LSTM on 1 sec chunk
F1 F2 F3 F4 F5

M F M F M F M F M F
M 74 12 38 64 72 18 79 16 105 32
F 27 55 30 68 18 73 33 66 14 104

acc 0.77 0.53 0.80 0.75 0.82
F1 0.74 0.59 0.80 0.73 0.82

prec 0.82 0.52 0.80 0.80 0.76
recall 0.67 0.69 0.80 0.67 0.88
Acc: 0.73±0.12, F1: 0.74±0.09, Precision: 0.74+0.13, Recall: 0.74±0.10

1-D CNN LSTM on 2 sec chunk
F1 F2 F3 F4 F5
M F M F M F M F M F

M 63 23 24 78 89 1 71 24 124 13
F 10 82 5 89 29 61 15 92 35 68

acc 0.81 0.58 0.83 0.81 0.8
F1 0.83 0.68 0.80 0.83 0.74

prec 0.78 0.53 0.98 0.79 0.84
recall 0.89 0.95 0.68 0.86 0.66
Acc: 0.77±0.11, F1:0.78±0.06, Precision: 0.79±0.16, Recall: 0.81±0.13

1-D CNN LSTM on 3 sec chunk
F1 F2 F3 F4 F5
M F M F M F M F M F

M 66 20 30 72 78 12 72 23 104 33
F 19 73 17 77 27 63 16 91 25 78

acc 0.78 0.55 0.78 0.81 0.76
F1 0.79 0.63 0.76 0.82 0.73

prec 0.78 0.52 0.84 0.80 0.70
recall 0.79 0.82 0.70 0.85 0.76

Acc: 0.74±0.11, F1: 0.75±0.07, Precision: 0.73±0.13
1-D CNN LSTM on 4 sec chunk

F1 F2 F3 F4 F5
M F M F M F M F M F

M 71 15 31 57 90 0 77 18 118 19
F 21 71 27 67 24 66 21 86 32 71

acc 0.79 0.58 0.86 0.80 0.78
F1 0.80 0.61 0.85 0.82 0.74

prec 0.83 0.54 1.00 0.83 0.79
recall 0.77 0.71 0.73 0.80 0.69
Acc: 0.76±0.11, F1: 0.76±0.09, Precision: 0.80±0.16, Recall: 0.74+0.05

1-D CNN LSTM on 5 sec chunk

Table 4: No. of randomly chosen frames vs accuracy of 1-D
CNN LSTM for 3-sec chunk

Frames 10 50 100 200 300
Model Accuracy 0.73 0.75 0.76 0.77 0.77

4. Discussion
This section analyzes the results of the experiments mentioned
in Section 3 to answer the five questions we defined above.

1) Are gender cues present in the mel-spectrogram im-
ages of breath cycle?: Yes, the 2-D CNN model trained on mel-
spectrogram images of breath cycles has an average chunk-level
accuracy of 0.77±0.06 confirming this. Substantiating that the
model is able to learn the gender-specific spectro-temporal cues
captured by the spectrogram.

2) Do MFCC statistics features encode spectral charac-

Table 5: Confusion Matrices of the 1-D CNN LSTM model
with MFCC statistics across 100 random frames from the en-
tire breath audio file. Labels in red indicate true labels whereas
blue indicates predicted labels.

F1 F2 F3 F4 F5
M F M F M F M F M F

M 71 16 54 57 79 5 84 23 97 23
F 9 67 22 76 24 62 8 97 13 108

acc 0.85 0.62 0.83 0.85 0.85
F1 0.84 0.66 0.81 0.86 0.86

prec 0.81 0.57 0.93 0.81 0.82
recall 0.88 0.78 0.72 0.92 0.89
Acc: 0.80±0.10, F1: 0.81±0.09, Precision: 0.79±0.13, Recall: 0.84±0.09

1-D CNN LSTM on Random 100 Frames from entire breath

teristics of gender which can be used for automatic gender
classification with reduced parameters and training time?:
Yes, we were able to cut down the number of parameters and
training time by using the 1-D CNN LSTM model trained on
52 MFCC statistics without reducing classification accuracy.
The average accuracy of the model trained on the breath cy-
cle is 0.76±0.12. This shows that the 1-D CNN LSTM model
can learn the gender-specific spectral cues from the 52 MFCC
statistics to classify gender using breath cycle audios.

3) What is the role of breath boundaries in gender
classification?: We used chunks with durations 1sec, 2sec,
3sec, 4sec, and 5sec to compare model accuracy with the
one with breath boundary. It is observed that the classifica-
tion accuracy of the 1-D CNN LSTM model was best for 3-
sec chunks(0.77±0.11), followed by 5-sec chunks(0.76±0.11)
which is similar to the data-driven model used in the first ex-
periment. The reason behind this may be that 3sec and 5sec
chunks have lesser redundancies along the frames compared to
other chunks. The fact that the average duration of a breath cy-
cle across the dataset is 3.13-sec supports the observation that
3sec chunks are doing better than other chunks.

4) What is the effect of the number of frames in a breath
chunk on gender classification accuracy?: It is observed from
Table 4 that decreasing the number of frames within a chunk led
to a decrease in the model’s accuracy. This is because the model
relies on frame-level data to calculate 52 MFCC statistics that
capture important spectral cues. Therefore, it is crucial to in-
clude as many frames as necessary to obtain an accurate repre-
sentation of the data within the 3-second chunk, while avoiding
any redundant or extraneous frames.

5) What is the effect of taking random frames from the
entire breath audio on gender classification?: The model
trained on 52 MFCC statistics across random 100 frames from
entire breath audio recording outperforms all models trained
on continuous frame chunks with segment-level accuracy of
0.80±0.10 as it increases the sample space of frames on which
MFCC statistics are calculated.

5. Conclusion
In summary, our study demonstrates that vocal breath sounds
do encode gender cues which can be extracted using both data-
driven and knowledge-based features. Our findings suggest that
using long-term features (features calculated over longer du-
rations of the breath audio) results in a more accurate gender
classification model than using short-term features(features cal-
culated over shorter durations). To improve the model, we rec-
ommend increasing the size of the breath dataset. Overall, our
study provides evidence that vocal breath sounds are a viable
and accurate source of gender cues for gender classification.
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