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Abstract
While FastSpeech2 aims to integrate aspects of speech

such as pitch, energy, and duration as conditional inputs, it
still leaves scope for richer representations. As a part of this
work, we leverage representations from various Self-Supervised
Learning (SSL) models to enhance the quality of the synthe-
sized speech. In particular, we pass the FastSpeech2 encoder’s
length-regulated outputs through a series of encoder layers with
the objective of reconstructing the SSL representations. In the
SALTTS-parallel implementation, the representations from this
second encoder are used for an auxiliary reconstruction loss
with the SSL features. The SALTTS-cascade implementation,
however, passes these representations through the decoder in
addition to having the reconstruction loss. The richness of
speech characteristics from the SSL features reflects in the out-
put speech quality, with the objective and subjective evaluation
measures of the proposed approach outperforming the baseline
FastSpeech2.
Index Terms: text-to-speech synthesis, self-supervised learn-
ing, multi-task learning

1. Introduction
Over the past few years, text-to-speech (TTS) technology has
advanced remarkably, revolutionizing how people communicate
with machines. Today, TTS finds applications ranging from au-
diobooks to virtual assistants. The rapid expansion of the in-
ternet and social media platforms is leading to a surge in the
need for TTS systems that can produce high-quality and natural-
sounding speech.

Building a high-quality Text-to-Speech (TTS) system re-
quires a large amount of labeled data, which can be expen-
sive and time-consuming. Self-supervised Learning (SSL) for
speech related tasks has emerged as a promising approach in
the recent years, and addresses such labeled data constraints.
wavlm [1], data2vec [2], HuBERT [3] and wav2vec 2.0 [4] are
few of the SSL paradigms that have shown remarkable perfor-
mance over various downstream tasks such as speech recogni-
tion, speaker identification, and emotion recognition [5]. How-
ever, the application of SSL representations within the TTS
setup has been relatively under-studied. This work aims to in-
vestigate if the insights gained by the SSL models can be uti-
lized to improve the synthesized speech quality in TTS systems.

This paper uses FastSpeech2 [6] model as a baseline sys-
tem for conducting the experiments. However, the ideas pro-
posed in this paper are equally applicable to the JETS (Jointly
Training FastSpeech2 and HiFi-GAN for End to End Text to
Speech) [7] and VITS (Variational Inference with adversarial
learning for end-to-end Text-to-Speech) [8] framework. The
FastSpeech2 model is a strong baseline system since it has also
been trained to predict pitch and energy information of the audio

from the text transcription in addition to the mel-spectrogram.
This additional feature helps the model capture various speech
variations and nuances. Furthermore, the FastSpeech2 model’s
non-auto regressive nature offers a distinct advantage over its
auto-regressive counterparts. Faster model training and quicker
inference times have been among the most desirable aspects of
every deep learning algorithm, and FastSpeech2 achieves both
these objectives owing to its non-auto regressive design choice.

Moreover, the model’s architecture is fairly simple to com-
prehend, making it easier to introduce changes and updates.
This characteristic is particularly beneficial, allowing us to
tweak the model’s structure to suit our needs and objectives
better. To generate audio waveforms from mel-spectrograms,
we have utilized a well-trained vocoder model based on Gen-
erative Adversarial Networks (GANs) [9]. The HiFi-GAN [10]
vocoder has been the choice of the vocoder model for our ex-
periments as it is being widely used and promising in terms of
performance. By utilizing a pre-trained HiFi-GAN model, we
avoid the time-consuming and computationally expensive pro-
cess of training a vocoder model from scratch.

The motivation behind this study is to explore novel ways
to leverage SSL representations with improving the quality and
variability of synthesized speech as the objective. To this end,
we present a novel text-to-speech (TTS) model, which we re-
fer to as SALTTS. SALTTS stands for Self-supervised repre-
sentations for Auxiliary Loss in TTS and is based on the Fast-
Speech2 architecture. Nevertheless, as mentioned earlier, this
approach equally applies to frameworks like JETS, VITS, etc.
We develop two variants for this newly proposed model namely,
SALTTS-parallel and SALTTS-cascade. The primary objec-
tive of these architectures is to introduce an additional encoder
block (SSL predictor) that is capable of predicting the embed-
dings generated by the SSL models. By doing so, we aim to
enhance the capability of the model to capture a broader range
of speech variations in addition to the energy and pitch infor-
mation that FastSpeech2 has incorporated. The addition of the
SSL predictor block enables the model to learn more nuanced
representations of speech, which could eventually translate into
better quality of synthesized speech. Overall, we believe that
our proposed methods have the potential to improve over the
state-of-the-art in speech synthesis significantly.

Our paper aims to advance speech synthesis by explor-
ing the intersection between text-to-speech (TTS) synthesis
and self-supervised learning (SSL). In particular, our focus is
on identifying novel research directions and opportunities for
leveraging the rich SSL representations into improving the per-
formance and efficiency of TTS models. The major contribu-
tions from this work are as follows:
• We develop SALTTS-parallel and SALTTS-cascade, both of

which aim to introduce information from SSL representations
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Figure 1: Illustration of the parallel and cascade variants of the SALTTS architecture.

into the FastSpeech2 architecture.
• During inference, SALTTS-parallel operates exactly as Fast-

Speech2. This helps the model learn from the additional in-
formation presented by the SSL representations during train-
ing, while retaining the inference speeds that FastSpeech2
promises.

• An additional repeater module has been developed to ac-
count for the different sampling rates, window sizes and hop-
lengths that FastSpeech2 and the SSL models operate at.
This module is quintessential to our proposed approach as
it ensures better alignment between the predicted and ground
truth SSL embeddings.

2. Related Work
The intersection of Self Supervised Learning and Text-to-
Speech synthesis is an area that has received limited atten-
tion within the speech research community. Prior studies have
largely focused on predicting mel-spectrograms as a means of
generating speech [11] [12]. However, a new approach has
emerged wherein discrete representation units, such as clusters
of SSL embeddings, are predicted instead of mel-spectrograms
[13] [14] [15]. Subsequently, speech is generated from these
discretized representations. To the best of our knowledge, no
research has been conducted yet that leverages SSL embeddings
to aid in generation of mel-spectrograms.

3. Methodology
In the following subsections, we elaborate on the architecture
of the proposed systems and the multi-task loss which together
aim to enhance the embeddings from the acoustic model. Fur-
thermore, we motivate the need for a repeater module over the
SSL representations and describe the functionality of the same.

3.1. Motivation
The architecture of FastSpeech2 [6] addresses one of the key
issues with FastSpeech [16] by training using the ground truth
targets instead of the outputs from the teacher model. In ad-
dition, FastSpeech2 extracts duration, pitch and energy infor-
mation from the waveform and uses them as conditional inputs
during the training phase, thereby introducing variability to the
process.

Speech signals are complex in nature having several char-
acteristics such as emotion, intent, emphasis and tone among
many more. Having a predictor in FastSpeech2 to account for
each of these facets is not practical, as rich ground truth infor-
mation for each of those speech aspects is not directly available.
Also, such a design would continuously increase the complex-
ity of the model in the process of accounting for each aspect of
speech.

Models pre-trained using the SSL paradigm have been ob-
served to generalize over an array of speech tasks such as
emotion detection, speaker recognition and phoneme recogni-
tion, the performance of which has been documented over SU-
PERB [5]. Given that the representations from these speech
SSL models serve multiple downstream tasks, we leverage the
embeddings from these models to bring in the various aspects
of speech that have not been accounted for in the design of Fast-
Speech2.

3.2. Architecture and Variants
We extract the SSL representations for every utterance of the
LJSpeech dataset [17]. It is to be noted that these represen-
tations are 768-dimensional, given that we employ the BASE
variant of the various SSL models. The embeddings gener-
ated by the variance adapter of FastSpeech2 which are 384-
dimensional, are passed through a multi-layer projector which
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converts them to 768-dimensional embeddings. A 4-layer en-
coder block (illustrated in Fig.1 as SSL predictor) takes in these
embeddings from the multi-layer projector and predicts the rep-
resentations produced by the SSL model during the training
stage. An auxiliary L1-loss is computed between the embed-
dings predicted by this encoder and the representations from
the SSL model.

Laux =
n∑

i=1

|y − ŷi| (1)

where Laux is the auxiliary SSL embedding loss, y and ŷ
are true and predicted SSL embedding vectors respectively and
n is the total no. of datapoints.

3.2.1. SALTTS-parallel
As illustrated in Fig.1, the SALTTS-parallel variant passes the
representations from the variance adapter directly to the Mel-
spectrogram decoder, maintaining the flow of FastSpeech2. The
reason we address this variant as SALTTS-parallel is that, it
computes an additional L1-loss after predicting the SSL rep-
resentations from the multi-layer projector, while the decoder
continues to work with the embeddings from the variance
adapter. Such a design choice ensures that we leverage the rich-
ness of the SSL representations, while continuing to maintain
the inference speeds of FastSpeech2. It is to be noted that during
inference, SALTTS-parallel functions exactly as FastSpeech2
with the same number of parameters, since the auxiliary L1-loss
is used only during the training stage.

3.2.2. SALTTS-cascade
In the design of SALTTS-cascade (Fig.1), the Mel-spectrogram
decoder works with the 768-dimensional representations from
the SSL predictor. A residual connection has been added from
the output of the multi-layer projector to ensure faster conver-
gence of the model. The additional L1-loss however, is com-
puted between the embeddings from the SSL predictor (before
the residual connection) and the representations from the SSL
model. The decoder’s attention dimension here is set to 768
to ensure compatibility with the 768-dimensional embeddings
generated by the SSL predictor. Given the flow of SALTTS-
cascade, it takes relatively longer to synthesize utterances com-
pared to SALTTS-parallel.

3.3. Repeater Module
As mentioned in sections 3.1 and 3.2, SALTTS attempts to ben-
efit from the representations of SSL models. However, before
computing an additional L1-loss between the representations
from the SSL predictor introduced in FastSpeech2 (Fig.1) and
the representations from SSL models, we need to deal with the
mismatch in sampling frequency and hop length between the
FastSpeech2 and SSL models. Most of the speech SSL models
operate on waveforms which have a sampling rate of 16kHz.
FastSpeech2 for LJSpeech, however, operates on speech sam-
ples with a 22.05kHz sampling rate. Moreover while generating
embeddings at a frame level, most SSL models operate with a
window size of 25ms and a hop length of 20ms. FastSpeech2
however, functions with a window size of 45.6ms and a hop
length of 11.6ms.

To account for this mismatch in the frame-level informa-
tion, we need a strategy that aligns a set of SSL representations
to the embeddings from the SSL predictor of FastSpeech2. On
performing a time-level analysis over the progression of these
models, we notice that the first 5 frames from the SSL model
align with the first 7 frames from FastSpeech2. To generate an
aligned set of frames, we repeat the second and fourth frame

of the SSL model, to match the number of frames from Fast-
Speech2. Subsequently, every 18 frames from the SSL model
align with 31 frames from FastSpeech2 in the time domain. We
follow a {2, 2, 1}-strategy to ensure an alignment in this case.
That is, for every 3 frames from the SSL model, we repeat the
first frame once and the second frame once after adding some
Gaussian noise sampled from a standard normal distribution.
We leave the third frame as is. For the remainder set of frames,
where such a strategy could increase the number of frames,
we drop frames from the end (after repetition), until we find
a match.

A repeater module (illustrated in Fig.1) that works on a set
pattern is therefore essential to our process as it ensures align-
ment in the time domain between the two set of embeddings
before the additional L1-loss is computed.

4. Experimental Setup
We use the LJSpeech dataset [17] to train and evaluate all the
baseline and proposed models. A GAN-based well trained
vocoder is used for all the experiments in this study to produce
final audio wav files from the predicted mel-spectrograms. The
HiFi-GAN vocoder model [10] has been chosen for this purpose
as it is one of the most widely used vocoders. The HiFi-GAN
model used here is pre-trained on the same LJSpeech dataset for
2.5M iterations.

For all our experiments, we consider the FastSpeech2
model with a HiFi-GAN vocoder as our baseline system. The
baseline model and the proposed architectures are set up,
trained and evaluated using the ESPnet-framework [18]. While
the baseline FastSpeech2 model was trained for 1000 epochs
in 3 days, the proposed SALTTS-parallel and SALTTS-cascade
models take 4.5 days to train for the same number of epochs, on
4 GPUs.

4.1. SSL Representations
As mentioned in section 3.2, SALTTS-parallel and SALTTS-
cascade need an SSL model to extract representations from,
which would then be reconstructed by our proposed network.
Given that there are multiple speech SSL models available, we
make our choice based on their performance in the Speech En-
hancement task of SUPERB [19], which is a generative task.
To be uniform in the choice of embedding dimensions and the
SSL model sizes, we use the BASE variants of the SSL mod-
els available. The SSL models we use for our experiments are:
HuBERT [3], ccc-wav2vec 2.0 [20] and data2vec-aqc [21].

The embeddings from the layers 9, 10 and 11 are averaged
and added to be used as targets for the SSL predictor. These are
the layers that have been observed to be contributing the most
for the recognition and semantics tasks [1].

5. Results and Analysis
The proposed TTS models and the baseline model have been
evaluated on both subjective and objective metrics. For objec-
tive measures, mel-cepstral distortion (MCD) and log-F0 root
mean square error (F0 RMSE) were used. MCD is a mea-
sure of how different two sequences of mel cepstra are. The
smaller the MCD between synthesized and natural mel cepstral
sequences, the closer the synthetic speech is to reproducing the
natural speech. Log-F0 RMSE refers to the logarithm of the
root-mean-square error (RMSE) of the fundamental frequency
(f0) contour predicted by a TTS system compared to the target
f0 contour of the reference speech.

As a subjective measure we use the Mean Opinion Score
(MOS). MOS is a widely used metric in TTS systems to eval-
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Model SALTTS-Type MOS (95% CI) MCD F0 RMSE

Ground Truth - 4.51 ± 0.15 - -
Baseline FastSpeech2 - 3.65 ± 0.2 10.0750 ± 0.5099 0.2448 ± 0.0532

data2vec-aqc
Parallel 3.85 ± 0.19 10.1130 ± 0.5063 0.2441 ± 0.0494
Cascade 3.51 ± 0.22 10.2129 ± 0.5274 0.2399 ± 0.0525

ccc-wav2vec 2.0
Parallel 3.87 ± 0.19 10.1364 ± 0.5118 0.2415 ± 0.0481
Cascade 3.54 ± 0.21 10.1670 ± 0.5154 0.2389 ± 0.0494

HuBERT
Parallel 3.95 ± 0.18 10.1016 ± 0.5085 0.2404 ± 0.0542
Cascade 3.58 ± 0.2 10.1505 ± 0.5103 0.2386 ± 0.0531

Table 1: Performance of the baseline and the proposed SALTTS models over objective and subjective evaluation metrics.

uate human listeners’ perceived quality of synthesized speech.
It measures how natural and intelligible the speech sounds to a
listener on a scale from 1 to 5, with 5 being the highest score.
MOS is calculated by averaging the scores assigned by multi-
ple human listeners who have evaluated the same set of audio
samples.

For the evaluation, we have 8 different sources to be con-
sidered: the ground truth, baseline FastSpeech2, three SALTTS-
parallel models and three SALTTS-cascade models. Ten audio
samples were randomly sourced from each of these systems for
human evaluation. These samples were then presented in a ran-
dom order to 46 proficient English language speakers who were
pursuing master’s level education. The participants were asked
to rate the audio samples on a scale of 1 to 5 based on the nat-
uralness and intelligibility of the audios. Two separate sets of
audio samples were created, each containing 5 samples from
each source, and each set was evaluated by different set of 23
people. As a result, each human evaluator rated 40 audio sam-
ples sourced from 8 different systems.

MCD score as an evaluation metric is known to have its
limitations. It may not be sensitive to some types of artifacts that
affect speech quality, such as jitter, shimmer, and reverberation.
MCD will not be able to capture the intelligibility of the speech
as previously it has been observed that models having better
MCD scores produce less intelligible speech [22].

The results for the experiments are shown in Table 1. Ob-
serving the objective measures (MCD and F0 RMSE), all the
models result in a similar performance compared to the base-
line. However, the baseline FastSpeech2 has the least MCD
score. All the proposed models outperforms the the baseline
system in the log-F0 RMSE score, although the difference is
marginal. When it comes to the MOS score which is a subjec-
tive metric, the baseline FastSpeech2 performs relatively 3.8%
better compared to SALTTS-cascade (with data2vec-aqc), 3%
better compared to SALTTS-cascade (with ccc-wav2vec 2.0),
and 1.9% better as compared to SALTTS-cascade (with Hu-
BERT). However, all the proposed SALTTS-parallel models
are better than the baseline. HuBERT (parallel) gave the best
MOS score of 3.95 ± 0.18, which is relatively 8.2% better
than the baseline approach. The ccc-wav2vec 2.0 (parallel)
and data2vec-aqc (parallel) showed a relative improvement of
6.02% and 5.4% compared to the FastSpeech2 baseline respec-
tively. For both SALTTS-parallel and SALTTS-cascade mod-
els, the best SSL models turned out to be HuBERT followed by
ccc-wav2vec 2.0 and data2vec-aqc.

We hypothesize that when using SALTTS-cascade models,

the gradients responsible for the mel-spectrogram loss undergo
a longer path before ultimately reaching the variance adapter
and lower encoder layers, which could negatively impact perfor-
mance. Although we attempted to enhance the model’s perfor-
mance by incorporating a residual connection from the Multi-
layer Projector network to the mel-spectrogram decoder, the re-
sults did not show a significant improvement.

In contrast, for SALTTS-parallel models, the gradients re-
sponsible for mel-spectrogram loss immediately affect variance
adapter and lower layer encoder. Furthermore, in a multi-task
learning setup that includes the SSL embedding loss, the em-
bedding after the Variance adapter tries to get richer, indirectly
leading to better output from the mel-spectrogram decoder.

6. Conclusion and Future work
The present study proposes a novel approach called SALTTS
(Self-supervised representations for Auxiliary Loss in TTS)
to improve the quality of synthetic speech by incorporating
more comprehensive speech-related information into TTS sys-
tems. Two variants of the proposed method are investigated:
SALTTS-parallel and SALTTS-cascade. The results indicate
that all SALTTS-parallel models outperform the baseline Fast-
Speech2 model, regardless of the SSL algorithm used. Con-
versely, none of the SALTTS-cascade models were able to sur-
pass the baseline FastSpeech2 model. The SSL models explored
in this paper are HuBERT, ccc-wav2vec2.0, and data2vec-aqc.
The results showed that SALTTS-parallel, when used with Hu-
BERT, provided the best performance with an 8.2% relative
improvement in MOS score over the baseline method Fast-
Speech2.

The main focus of this study is to investigate the impact of
architectural modifications on the performance of TTS models.
However, the study also highlights the potential for future re-
search to analyze the effects of using other SSL models, such as
WavLM, on the performance of TTS models. This avenue for
further research could enhance our understanding of the com-
plex relationships between TTS architectures and SSL methods.
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