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Abstract
We investigate an optimised non-linear frequency warping scale
for speech emotion recognition (SER). The proposed scale
maps the speech spectrogram onto another time-frequency do-
main which is invariant to speaker-specific variations. Gener-
ally, the famous mel-scale designed on human audio percep-
tion is considered the de facto standard of frequency warping.
However, designed mainly for speech recognition, the gener-
alisability of mel on other speech processing tasks is debat-
able. Our experiments show that an emotion-specific scale de-
signed on an SER database outperforms the standard mel-scale.
Along with performance improvement, the proposed approach
also provides insight into the emotion-relevant frequency re-
gions for SER. Despite the database-dependent design of our
approach, we find that the scale obtained from our experiments
also shows SER performance improvement when tested on two
other databases.
Index Terms: Speech emotion recognition, Non-linear fre-
quency warping, Constant-Q transform

1. Introduction
Speech emotion recognition (SER) includes a pattern recog-
nition task of predicting emotional state of spoken utterances.
With applications in fields like patient monitoring, autonomous
driving vehicles, customer care services, etc., a complete speech
emotion aware system is expected to bridge the efficiency gap
in human-computer interaction systems [1, 2, 3]. However, the
lack of complete understanding of emotion-relevant character-
istics of speech and their corresponding correlations is a major
challenge that prevents SER supremacy [3, 4, 5, 6, 7].

Along such lines, an optimised time-frequency representa-
tion (TFR) that emphasises emotion-relevant spectral regions
continues to be a debatable aspect of SER [1, 8]. Inspired by
the non-linear (logarithmic) processing of frequencies in hu-
man cochlea, several methods use different types of logarithmic
warping scales (e.g., mel, bark, equivalent rectangular band-
width (ERB), constant-Q) on the standard short-time Fourier
transform (STFT) to obtain a TFR. Application of such a scale
provides a frequency compressed representation with reduced
spectral variations [9]. These variations originally stem from
the differences in vocal tract anatomy, speaking style, cultural
background, spoken language, gender, age, emotional state,
etc. [10, 11, 12]. The non-linear scale applies a bilinear trans-
formation that maps the STFT onto a frequency-warped space
where these differences are normalised, atleast to some ex-
tent [12, 13, 14]. Therefore, search for an SER-optimised scale
involves a warping function that normalises speaker-dependent
variations while preserving the emotional attributes.

In speech processing domain, one of the most successful

warping scale is the mel-scale [15]. The features obtained af-
ter applying mel-filterbank on STFT are termed mel-frequency
spectral coefficients (MFSC). Authors in [16] found that such
transformation provides invariance to temporal and spectral de-
formations leading to a stable TFR. However, the mel non-
linearity was originally designed for speech recognition and is
not the most optimum scale for every speech-related task, as
found by studies in anti-spoofing [17], and SER [18, 19]. Also,
a perception-based filterbank does not guarantee a best fit for
every speech-related task [20]. Studies show that a data-driven
TFR obtained by employing filterbank with denser sampling
of higher signal-to-noise ratio (SNR) frequency regions outper-
form mel-scale [21, 22]. These observations question the notion
of a generalised scale for different speech tasks and show the re-
quirement of a speech-task-specific non-linear warping scale.

Recently, the advent of deep neural networks (DNNs) has
inspired automatic feature learning and an end-to-end approach
to SER. Several studies use STFT or raw speech directly
with a DNN model so as to automatically learn an optimised
TFR [20, 23, 24]. Although end-to-end DNN-based models
have been shown to outperform the traditional handcrafted fea-
tures, they also have disadvantages, such as the requirement of
a large database [5, 25], and lack of physical insight into task-
relevant characteristics [26]. The unavailability of large emo-
tion databases [25, 27] and limited understanding of emotion-
relevant speech characteristics make these disadvantages sig-
nificant from SER perspective. According to [28], generali-
sation across speech variations can be achieved by: selecting
the most task-relevant acoustic cues (analogous to handcrafted
features), and learning speaker-specific variations (analogous
to DNN modeling). Therefore, an approach that combines
domain-knowledge-based feature extraction with DNN-based
enrichment of the extracted information can help to achieve
a best-of-both-worlds solution. This becomes our motivation
to design a handcrafted representation for improved emotion-
information extraction and feed it to DNN for further generali-
sation across speaker-related variations.

In this work, we investigate the following questions: is
there an emotion-specific frequency warping scale? Can the
standard constant-Q/mel scale be modified to obtain such a
scale? Would such a scale developed from a database give poor
SER performance on another database? To answer these, we
propose modifications on the constant-Q scale, i.e., constant-Q
transform (CQT), to obtain a novel TFR for SER. Our choice of
CQT, to begin with, stems from its higher low frequency resolu-
tion as compared to the mel-scale [17]. As pitch and lower pitch
harmonics are found to be more emotion relevant [29], higher
resolution around lower pitch harmonics makes the constant-Q
scale a better contender for SER [30]. We also compare the per-
formance of the proposed approach by applying similar modifi-

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

3647 10.21437/Interspeech.2023-1600



cations on the mel-scale. The optimised TFRs are then fed to a
DNN classifier backend for performance evaluation.

2. SER specific frequency warping
Apart from stability against temporal deformations [16], fre-
quency warping also introduces stability to speaker-specific
variations. A logarithmic scale transforms the speaker-specific
uniform scaling of frequency components in the spectrogram to
frequency translation in the warped non-linear TFR [31]. How-
ever, considering the speaker-specific effects to be uniform is
a rudimentary assumption. Rather a frequency-dependent non-
uniform scaling can better represent the vocal tract differences
across speakers [31]. In the following subsections, we show
how the constant-Q scale converts uniform spectral scaling to
spectral translation. We then discuss modifications that deal
with non-uniform spectral scaling for an improved TFR.

2.1. Constant-Q transform

The constant-Q transform of a signal x(n) is given as [17],

XCQT[k, n] =

n+⌊Nk/2⌋∑

j = n−⌊Nk/2⌋
x(j)a∗

k(j − n+Nk/2) (1)

where k is the CQT frequency bin, Nk is the window length,
⌊.⌋ denotes the rounding-off to the nearest integer towards neg-
ative infinity, and a∗

k(n) denotes the complex conjugate of the
basis function for kth CQT bin. The filter centre frequencies
in constant-Q transform are given by fk = fmin2

k−1
B where

fmin is the lowest frequency bin, and B is the number of fre-
quency bins per octave. The constant-Q scale employs a bi-
nary logarithmic (log2) non-linearity which leads to denser fil-
ter arrangement at low frequencies as compared to the standard
mel-scale. To observe the effect of constant-Q scale on speaker-
related frequency transposition, we consider two speakers, X &
Y, with frequency components related by a uniform scaling fac-
tor α. The constant-Q warping applied on linear frequency ω
can also be written as f(k) = F

(
ω = 2k

)
. Then,

fX(k) = FX

(
ω = 2k

)
= FY (αω)

= FY

(
α 2k

)
= FY

(
2(k+log2α)

)

= fY (k + log2α).

(2)

Thus the uniform frequency scaling between speakers is
transformed into frequency translation (shift) in the warped
domain. The classifier now only needs to learn invariance
against these frequency translations, instead of the scaling fac-
tor, for proper classification. However, the frequency trans-
position appearing due to the vocal tract differences across
speakers can be better modelled by a non-uniform frequency-
dependent scaling [31]. Therefore, the Eq. 2 analogous repre-
sentation of frequency-dependent scaling (α(ω)) is, FX(ω) =
FY (α(ω)ω). We now require a new frequency-dependent non-
linear warping function that can map the α(ω) in the original
domain (spectrogram) to a translation in the warped domain.
Mathematically,

fX(k) = FX(ω = µ) = FY (α(ω)µ)

= fY (k + η),
(3)

where µ is the required new non-linear warping function (scale)

and η is the corresponding shift in the warped frequency do-
main.

2.2. Gaussian modulated constant-Q scale

In CQT, for a fixed value of bins per octave, the separation be-
tween filter centre frequencies increases by 2

1
B . This causes

dense filter placement at low frequencies (e.g., 4 filters below
80 Hz in our CQT configuration, cf. Section 3.2), where speech
information is very less. As the SER literature reports greater
emotion relevance of pitch and lower pitch harmonics [29, 30],
filter placement below the pitch frequency range is not desir-
able.

One solution to the above-mentioned shortcoming is the
shifting of filter centre frequencies, especially those at low fre-
quencies, towards higher side. This would increase the filter
density, and hence, frequency resolution around lower pitch har-
monics benefiting SER. To move the centre frequencies, we add
a Gaussian function to the constant-Q scale so as to shift the fil-
ters without distorting the continuity of the original scale. The
new modified non-linear scale is then given as,

fk = fmin2
k−1
B + Ae

− (k−δ)2

β , (4)

where, A is amplitude, δ is shift, and β is bandwidth of the
Gaussian function. We choose a Gaussian function so that a
localised deformation of the scale can be obtained with fewer
parameters. In Section 3.2, we describe how the values of these
parameters are chosen to optimise SER performance.

The Eq. 2 analogous expression for the modified scale (ig-
noring parameters B, A, and β for simplicity) is given as,

fX(k) = FX

(
ω = 2k + e−(k−δ)2

)
= FY (αω)

= FY

(
α
(
2k + e−(k−δ)2

))
.

(5)

To simplify further, we approximate the effect of Gaussian on
the original scale with two exponential functions, i.e.,

FY

(
α

(
2
k
+ e

−(k−δ)2
))

≈

{
FY

(
α
(
2k + e(k−δ)

))
, for k ≤ δ

FY

(
α
(
2k + e−(k−δ)

))
, for k > δ

=

{
FY

(
2(k+log2α) + e(k−δ+lnα)

)
, for k ≤ δ

FY

(
2(k+log2α) + e−(k−δ−lnα)

)
, for k > δ.

(6)

Similar to Eq. 2, the uniform scaling factor α in the orig-
inal frequency domain is mapped to translation in the warped
frequency domain. However, the translation does not take place
by a single constant factor only but consists of two separate
terms: a constant factor log2α and a factor dependent on the
warped frequency scale (δ − lnα or δ + lnα). The use of ex-
ponentials for piece-wise approximation of the Gaussian repre-
sents a comparatively reduced non-linearity (increased slope) in
the modified scale before δ and vice-versa. This varying non-
linearity in the modified scale leads to a non-uniform translation
in the warped frequency domain. We relate this to the scale µ
in Eq. 3 that transforms an underlying non-uniform frequency-
dependent scaling factor α(ω) to an additive term η. Hence, the
Gaussian modified scale results in potentially improved invari-
ance to non-uniform speaker-specific variabilities. In Section 4,
we further discuss the SER relevance of the modified scale de-
signed with the optimised values of Gaussian parameters.
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(a) Step 1: Gaussian magnitude (A) vs performance. Here both β =
65.0 and δ = 10.0 are empirically selected.
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(b) Step 2: Gaussian bandwidth (β) vs performance. Here A = 75.0 is
the optimised value from step 1 and δ = 10.0 is the empirical value.
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(c) Step 3: Gaussian shift (δ) vs performance. Here both A = 75.0
and β = 65.0 are optimised values obtained from previous two steps.
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(d) Comparison between original (blue) and Gaussian modified scale
(red).

Figure 1: Subfigures (a), (b), and (c) show the optimisation of Gaussian parameters on EmoDB database. Starting from an empirically
selected set of values, we first optimise A keeping β and δ fixed. Next, we optimise β by fixing the optimum value of A and empirically
selected δ. Finally, δ is optimised using the optimum values of the other two parameters. Experiments are repeated five times and their
average and standard deviation is reported. The highlighted part (in red) shows the values with best performance. Subfigure (d) shows
the comparison between the original constant-Q and the modified scale.

Table 1: Summary of the speech corpora used in the experi-
ments (M:F = Male-Female speakers ratio).

Databases # Speakers # Emotions

Ryerson Audio-Visual Database
of Emotional Speech and Song

(RAVDESS) [32]

24
(M:F = 1:1)

8
(Calm, Happy, Sad, Angry, Neutral,

Fearful, Surprise, and Disgust)

Interactive Emotional Dyadic
Motion Capture Database

(IEMOCAP) [33]

10
(M:F = 1:1)

4
(Happy, Angry, Sad, and Neutral)

Berlin Emotion Database
(EmoDB) [34]

10
(M:F = 1:1)

7
(Anger, Sad, Boredom, Fear,
Happy, Disgust, and Neutral)

3. Experimental framework
3.1. Databases used

We use three publicly available SER databases for performance
comparison of different non-linear scales. Table 1 provides a
brief summary of the databases.

3.2. Parameter values for feature extraction

Following [30], we employ CQT with fmin = 32.7 Hz, 3
bins per octave over a total of 8 frequency octaves, and a hop

length of 64 samples. To obtain the optimum values of Gaus-
sian parameters A, δ, and β, we first select an empirical value
of A = 10, δ = 10, and β = 65. Then, keeping δ and
β fixed, we evaluate SER performance for different values of
A. In the next step, keeping the optimum A and empirically
chosen δ as fixed, we evaluate performance for different val-
ues of β. The same procedure is repeated to find δ by replac-
ing the other two parameters with their obtained optimum val-
ues. The parameter optimisation is performed on the EmoDB
database and the obtained values are then used to evaluate per-
formance on other databases. Regarding selection of initial em-
pirical values, we choose δ = 10 so as to keep the deforma-
tion centralised more towards low-frequencies. The choice of
β = 65 ensures greater shifting of low-frequency filters (fil-
ters around lower pitch harmonics) towards high frequencies as
compared to other values of β. We did not perform a complete
grid search to avoid experiments with SER irrelevant parame-
ter combinations, e.g., parameter values that have more effect
on high-frequency filters. In fact, our experiments are more fo-
cused on investigating whether the scale deformation has some
generalised positive SER consequence, and less focused on de-
signing a highly-specialised database-dependent scale. We use
LibROSA [35] and nnAudio [36] libraries to compute MFSC,
CQT, and their corresponding modified versions.
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Figure 2: Comparison of filter density in CQT, modified CQT,
and MFSC. The red vertical lines show filter bins for corre-
sponding TFR. The filter bins are plotted over the histogram of
pitch (F0), first formant (F1), and second formant (F2) of all
utterances in EmoDB.

Table 2: Employed DNN architecture. ’×N ’ shows the re-
peated connection of N layers. FC = Fully-connected.

Layer Filters Kernel Size
(Freq. × Time)

Maxpool
(Freq. × Time)

Conv 2D (×4) 128 3 × 5 2 × 2
Conv 2D (×2) 128 3 × 5 -
BiLSTM (×2) 128 - -

Attention
Pool - - -

FC 128 - -
Softmax # Classes - -

3.3. Classifier description

Table 2 shows the architecture of the employed DNN model.
We use ReLU activation, batch normalisation, dropout of 0.3 on
only FC layer, and a mini-batch size of 64. A learning rate value
of 0.001 is used with scheduler having decay 0.5 and patience
of 5 epochs. The lowest learning rate is set to 2.5e−4. PyTorch
python library is used to implement the DNN architecture.

3.4. Evaluation methodology

We use accuracy and unweighted average recall (UAR) as per-
formance metrics. Accuracy is the ratio of the number of sam-
ples correctly classified to the total number of samples in the test
set. Due to the unintuitive nature of accuracy in scenarios with
unbalanced emotion classes, we also employ UAR for perfor-
mance evaluation [37]. We use leave-one-speaker-out (LOSO)
cross-validation framework (utterances of one speaker in test,
one in validation, and rest in training) to evaluate performance
of every database. For training, we segment the utterance into
overlapping chunks of 100 consecutive frames, whereas for
testing, the utterances are used as such. The DNN model is
trained for 50 epochs and the model that provides the highest
validation UAR is finally used for testing.

4. Results & discussion
Figure 1 shows the optimisation of Gaussian parameters on
EmoDB database. As small sizes of SER databases cause over-
fitting, we repeat experiments for every combination of Gaus-
sian parameters five times and average the result. During op-
timisation of A, we observe a peak in average performance
around numerical value 75, which drops with a further increase

Table 3: Performance comparison across databases.

Features Metric (in %) Databases
EmoDB RAVDESS IEMOCAP

CQT Acc. 76.10 55.75 52.80
UAR 70.71 51.94 48.09

Mod. CQT Acc. 77.8077.8077.80 57.6257.6257.62 54.2754.2754.27
UAR 72.1772.1772.17 53.4253.4253.42 49.1749.1749.17

MFSC Acc. 72.14 25.09 46.80
UAR 67.57 23.34 39.25

Mod. MFSC Acc. 73.87 34.23 39.99
UAR 69.70 29.20 34.31

in A. For β optimisation, peak performance is observed at 65,
which is also our initial empirical selection. Similarly, for δ,
the optimised value is also found equal to the initially selected
empirical value. Figure 1d shows the comparison between the
original and modified constant-Q scale (with optimised Gaus-
sian). From Figure 1d, we observe that the major deviation
from the original scale that causes performance improvement
appears below 1 kHz, justifying greater emotion relevance of
low frequencies and our empirical choice of δ and β. Figure 2
shows that the modified scale also has greater filter density over
pitch histogram as compared to the original scale. This leads to
an increased frequency sampling of emotion-relevant frequency
regions in the TFR improving SER performance. The modifi-
cation also leads to reduced non-linearity (increased slope) and
hence reduced warping at low frequencies, i.e., before δ and
vice-versa (in our experiments, δ = 10, which corresponds to
32.7 · 2 10−1

3 = 261.6 Hz). Table 3 shows the performance
of different features on different SER databases. Similar to
EmoDB, experiments with other databases are also repeated five
times and their average is reported. We observe improvement on
every database with the modified constant-Q TFR by an almost
similar margin, when compared to original constant-Q scale.
The similar margin in improvement indicates a similar emotion-
relevant effect, i.e., speaker-invariance, provided by the modi-
fied scale on every database. Similar modification on mel-scale
also shows improvement on EmoDB and RAVDESS databases.
Increased speaker invariance due to the modification also helps
mel-scale but only on EmoDB and RAVDESS indicating the
scale dependency of the modification. We also observe that
plain CQT outperforms MFSC on every database by a notice-
able margin. For further experimental validation of speaker-
invariance, we also perform a Gaussian mixture model (GMM)
based speaker identification experiment on EmoDB. We found
that original CQT better identifies speakers than modified CQT,
justifying the increased speaker invariance in modified CQT.

5. Conclusion
We investigate modifications on the constant-Q frequency warp-
ing scale for SER. Our experiments show that a Gaussian func-
tion based modification of constant-Q scale, especially around
pitch frequencies, provides speaker invariance and improve-
ment in SER performance. The performance improvement ob-
tained by modifications optimised on one database is found to
generalise across other databases as well. However, similar
modifications on the standard mel-scale did not show consistent
performance improvement. This shows scale-dependent nature
of the employed modification and inspires further analysis of
SER-specific frequency warping. In future, a new function can
be investigated that provides more control over deformations
than the Gaussian. Cross-corpora evaluation can also be inves-
tigated for developing a robust scale that generalises well on
data from different domains.
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