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Abstract
Many existing works on voice conversion (VC) tasks use auto-
matic speech recognition (ASR) models for ensuring linguistic
consistency between source and converted samples. However,
for the low-data resource domains, training a high-quality ASR
remains to be a challenging task. In this work, we propose a
novel iterative way of improving both the ASR and VC models.
We first train an ASR model which is used to ensure content
preservation while training a VC model. In the next iteration,
the VC model is used as a data augmentation method to further
fine-tune the ASR model and generalize it to diverse speakers.
By iteratively leveraging the improved ASR model to train VC
model and vice-versa, we experimentally show improvement
in both the models. Our proposed framework outperforms the
ASR and one-shot VC baseline models on English singing and
Hindi speech domains in subjective and objective evaluations in
low-data resource settings.
Index Terms: iterative training, automatic speech recognition,
voice conversion, data augmentation

1. Introduction
Speech processing technologies such as voice conversion (VC)
and automatic speech recognition (ASR) have dramatically im-
proved in the past decade owing to the advancements in deep
learning technologies. However, the task of training these mod-
els remains challenging on low resource domains as they suffer
from over-fitting and do not generalize well for practical ap-
plications. As VC models often rely on ASR model for ex-
tracting content features or imposing content consistency loss,
[1, 2, 3], degradation of ASR directly affects the quality of VC
models. On the other hand, to improve the generalization capa-
bility of ASR model, a variety of data augmentation techniques
have been proposed with voice conversion being one of them
[4].

This creates a causality dilemma, wherein poor quality of
ASR model affects VC model training which in turn leads to
low quality data augmentation for training ASR models. Con-
versely, improving the ASR model should lead to better VC
models, which should produce better data augmentation sam-
ples for improving the ASR models. Motivated from this, in
this work we propose to iteratively improve the ASR model by
using the VC model as a data augmentation method for training
the ASR and simultaneously improve the VC model by using
the ASR model for linguistic content preservation.

We validate the proposed framework on two low-resource
domains, namely Hindi speech voice and English singing
domains, and show that our proposed iterative framework
improves the WER of ASR model as well as improves the
subjective and objective metrics of the VC model. We chose

English singing voice as it has low amount of public resources
for the task of VC as well as low amount of manual anno-
tations for training an ASR. Acapella singing voice without
annotations is also scarce, making the training of unsupervised
ASR models unfeasible. For showing the applicability of our
approach across languages different from English, we chose
the Hindi speech domain in low resource settings.

The contributions of our work are summarized as follows:
1. We propose an iterative framework to improve ASR models

by using VC models for data augmentation and VC models
by using ASR models as speech consistency loss.

2. We evaluate the proposed framework on Hindi speech do-
main under low data resource settings and successfully show
its superiority over the baseline models for both ASR and
VC.

3. We evaluate the proposed framework for the one-shot singing
voice conversion and singing voice recognition task using
NUS-48E and NHSS datasets and show that the proposed
framework significantly improves the word error rate of the
ASR model and quality of samples generated using the VC
model compared to models trained without the proposed
framework.

The audio samples are available at our website1

2. Related Work
The problem of converting the speaker identity of a voice
while preserving the linguistic content, such as speech voice
conversion (converting the speaker identity of speech signal)
[2, 5, 6, 7, 8], singing voice conversion (converting the speaker
identity of a singing signal) [9, 1, 3, 10] and emotional voice
conversion [11] (converting the emotion of expressive speech
signals) has been actively studied for decades. Recent advances
in deep learning have been inspired from techniques like auto-
encoder [5, 6, 9, 10] and generative adversarial networks (GAN)
[2, 3]. Recently, ASRs have been used to improve the linguistic
content preservation of VC models, [1, 2, 3]. These techniques
have dramatically improved VC models, yet the performance
drops significantly when we consider the challenging and real-
istic scenario of working on low data resource domains.

ASR performance in the supervised case has seen rapid im-
provements in the last few years due to advances in the model
architecture [12, 13, 14], training methods [15] and increasing
data size [16]. Recently, unsupervised ASR has gained popu-
larity [17] and shown remarkable efficacy in utilizing large sets
of unlabelled data. Yet, the accuracy of the ASR models drop

1https://demosamplesites.github.io/
IterativeASR_VC/.
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Figure 1: VC Model training with Speech Consistency Loss.

significantly when we try to generalize them across domains,
for e.g. from speech to singing, across languages, or train them
on low data resource domains. It becomes more important to
address the limitations of current ASR models because of their
usage in domains having wide variety of applications like voice
conversion [1, 3, 4], source separation [18] and text to speech
generation [19].

3. VC Data Augmentation in ASR training
Data augmentation has been effectively used for training ASR
models by modifying the pitch [20], applying spectral augmen-
tation and speed perturbation [21]. Although these augmenta-
tion strategies have been robustly shown to improve ASR mod-
els, recently, voice conversion has been shown to outperform
these methods [22, 4]. The effectiveness of using VC to aug-
ment the dataset in very low resource domains and superiority
of using VC over spectral augmentation is established in [22].
However, they do not make use of an ASR model during the
training of the VC model, hence their VC model cannot be
shown to leverage the improved ASR model which is trained
using VC data augmentation. In [4], it is shown that even in
the case of high data resource domain, VC is effective as a data
augmentation method for generalizing the ASR model to un-
seen speakers. They replace the encoder of the VC model with
a pre-trained ASR encoder and show the effect of using such
an encoder on the quality and speaker identity conversion. This
motivated us to adopt an iterative approach of using the VC as
a data augmentation tool for improving the ASR and using the
ASR to improve the VC model. Different from [4], which uses
the ASR encoder to disentangle the speaker identity and the lin-
guistic content, we use the ASR encoder as an auxiliary loss to
preserve the linguistic content. We further detail this in Section
4.

4. Speech Consistency Loss
The effectiveness of using a pre-trained ASR model for pre-
serving the linguistic content during voice conversion has been
shown in [1, 2, 4]. One way of using ASR features to preserve
the linguistic features is by applying the speech consistency loss
[2, 1]. In [2], the speech consistency loss is defined as

Lasr(θ) = EX,s

[
||hasr(X)− hasr(Vθ(X, s))||1

]
(1)

where X denotes mel-spectrogram of the source, hasr(·) de-
notes the encoder features of a differentiable pre-trained ASR
model, s is the speaker embedding of the target speaker, and
V is the voice conversion model which is conditioned upon X
and s. θ denotes the VC model parameters. It is assumed that
the output of the encoder of an ASR model is independent of

Figure 2: Iterative training for VC and ASR

speaker identity and pitch and contains only the linguistic con-
tent. Thus minimizing the Lasr loss emphasises the preserva-
tion of the linguistic content after voice conversion and does not
hinder speaker identity conversion nor pitch conversion.

The voice conversion training process using an ASR model
for preserving the linguistic content is shown in Figure 1.

5. Iterative Training Framework

Algorithm 1 Iterating training of ASR and VC

Require: Training data set τ , ASR fine-tuning routine
F (Ai, Dataset), VC training routine T (Dataset, Ai)

1: Train A0 using standard ASR training
2: Train V0 by utilizing A0 for minimizing Lasr

3: i = 0
4: while not done do
5: τ̂i+1 = Vi(τ) ▷ Apply VC data augmentation
6: Ai+1 = F (Ai, {τ, τ̂i+1}) ▷ Fine-tune ASR Model
7: Vi+1 = T (τ, Ai+1) ▷ Train VC Model
8: i← i+ 1
9: end while

The proposed iterative training framework is illustrated in
Figure 2 and its pseudo code is shown in Algorithm 1. In the
first step of the iterative training, an ASR model is trained on
the low resource domain dataset, τ , which we call as A0. Next,
we train a VC model which uses A0 for minimizing Lasr . We
call this VC model as V0. In the next step, we use V0 to apply
data augmentation to τ and get τ̂1. For applying the VC data
augmentation, we sample both the source and reference from
the train dataset and provide them to V0 to artificially increase
the diversity of the training samples in terms of speaker style.
We further fine-tune A0 on τ and τ̂1 and refer to the fine-tuned
model as A1. Using A1, for minimizing Lasr , we again train
a VC model which we denote as V1. This process of iterative
refinement of ASR and VC models is repeated until the WER
of the ASR model converges on the validation set.

The motivation of our approach is as follows. For training a
VC model, using an ASR model which is able to extract better
linguistic features and generates speaker independent encoder
features will lead to better content preservation and clarity. Sim-
ilarly, for training an ASR model, using a VC model which pre-
serves more linguistic content and produces less artefacts will
generate more realistic samples for data augmentation. By it-
eratively training the ASR and VC model we leverage the im-
proved models for training the next iteration and thus achieve
better performance on the objective and subjective metrics.
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Table 1: Hindi ASR WER across iterations

Iter 0 1 2 3

WER ↓ 27.6± 0.13 26.2± 0.17 25.8± 0.16 25.7± 0.15

Although in this work we use speech consistency loss to
leverage the ASR model for improving the linguistic preserva-
tion capacity of the VC models, another approach of using the
ASR models is by providing the ASR features extracted from
Xsrc as an input to the VC model. Such an approach is used
in [1], which is an auto-encoder based VC model that takes the
pitch, loudness and ASR features as input. Although this ap-
proach has the advantage of utilizing non-differentiable ASR
models for training the VC model, it strongly relies on the ASR
features for extracting the linguistic content that can lead to poor
generalization of the VC model to out-of-domain samples.

6. Experiments
To evaluate the proposed framework in a realistic scenario
of low resource domains we chose Hindi speech and English
singing domains for the task of voice conversion and automatic
speech recognition.

6.1. Datasets

For the Hindi speech dataset, we use an internal data consist-
ing of nine speakers with a total duration of three hours. Out
of the nine speakers, five are male and four are female. The
speakers were given non-overlapping transcripts in the Hindi
language and were asked to speak them in a neutral tone. The
recordings were conducted in a studio setup. As the transcripts
are in Hindi, we use a transliteration package [23] to convert
the Devanagri characters to Latin characters. For training, we
use a subset of seven speakers and use two speakers for eval-
uation. We train an ASR model for WER objective evaluation
of the Hindi speech VC models. For this, we use the publicly
available MUCS2021 dataset [24] having 95.05 hours of train-
ing audio and 5.55 hours of testing audio.

For the English singing dataset, we use the publicly avail-
able NUS-48E [25] and NHSS [26] datasets. The NUS-48E
dataset consists of twelve singers with a total of two hours of
singing data and one hour of speech data. The NHSS dataset
consists of ten singers with a total of 4.75 hours of singing data
and 2.25 hours of speech data. For the experiments we use only
the singing data from NUS-48E and NHSS datasets. For train-
ing, we use a subset of ten singers from NUS-48E dataset and
eight singers from NHSS dataset which has a duration of four
hours and use the remaining speakers for evaluation.

For both the Hindi speech and English singing domain task,
the ASR model is trained on a combination of the target domain
and LibriSpeech dataset, which is a large English dataset con-
sisting of 960 hours of data [27] and is publicly available. The
LibriSpeech corpus is incorporated during training to improve
generalization of the ASR model.

For the VC and ASR training, all the data is first re-sampled
to 24kHz and an 80 bin mel-spectrogram representation is cal-
culated as in [2].

6.2. Model Architecture

For the ASR model, we choose the ESPNet framework [28]
having a hybrid CTC-Attention model [29]. For hasr , we use
the output of the encoder with 512 dimensions. As the ASR

Table 2: Hindi VC Results.

Iterations WER ↓ pMOS ↑ Identity ↑
0 41.93± 0.07 3.79± 0.01 0.7410± 0.0007
1 38.87± 0.07 3.89± 0.01 0.7388± 0.0007
2 38.85± 0.07 3.91± 0.01 0.7282± 0.0007
3 38.35± 0.07 3.94± 0.01 0.7498± 0.0007

model needs to extract linguistic features from the VC model’s
converted samples, we modify the mel-spectrogram extraction
hyper-parameters to match those of the VC model.

For the VC model we adopted [3], which is a recently
proposed modification of [2], a GAN-based network. A brief
overview of the VC model architecture is provided in Figure 1.
The implementation details are the same as in [3].

6.3. Training Details

ASR For training A0 we first train an ASR on the LibriSpeech
dataset, which we call as Abase and then fine-tune it on the low
resource domain. The Abase model was trained for 35 epochs
with a batch size having cumulative duration of 30 minutes. We
use Adam [30] optimizer with a learning rate of 0.0025 with
a warm-up scheduler of 40k iterations. For each iteration in
the iterative training, we fine-tune the ASR model for a total of
100k iterations with a learning rate of 0.00025. During fine-
tuning, we keep the distribution of the LibriSpeech dataset to
that of the target dataset as 1:3. The training details remain the
same across iterations.
VC We train the VC model with the same hyper-parameters
as in [3], except for the weight for the Lasr which we set as
100 for all the experiments. We use the hierarchical prior grad
vocoder, proposed in [31], to synthesize waveform from mel-
spectrogram. All the experiments are conducted using 2 A-100
Nvidia GPUs having runtime of 24 hour.

6.4. Evaluations

For showcasing the effectiveness of our proposed framework,
we consider A0 as a baseline model for the ASR evaluations
and V0 as a baseline model for the VC evaluations. We evaluate
our ASR models using the WER metric. For evaluating the VC
models, we use both objective as well as subjective metrics.

Objective metric for VC. We use NISQA-TTS [32]
for predicted mean opinion score(pMOS). For evaluating the
speaker conversion of the VC models, we use the Identity met-
ric, which is the cosine similarity of d-vectors extracted using
Resemblyzer [33], a speaker verification model. For calculating
how well the VC model preserves linguistic content, we cal-
culate the WER using an ASR model which is different from
the ASR model used for training the VC model. For the Hindi
speech domain, we train an ASR model on the MUCS 2021
dataset which is publicly available. For English singing do-
main, we use an ASR model trained using iterative framework
and having different distribution of speech and song data during
training. For the objective and subjective test, we use 346 and
420 samples for the Hindi speech and English singing domain,
respectively. The samples have a duration between 2 and 12
seconds.

Subjective metric for VC. We ask 17 audio engineers for
the Hindi speech and 23 audio engineers for the English singing
domain domain evaluation. The evaluators have no known hear-
ing impairment. For the Hindi speech AB and SMOS test, the
evaluators evaluate a total of 170 samples per model. For the
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Table 3: Singing ASR WER across iterations. Note that we stop
training the ASR after the WER converges.

Iter 0 1 2 3

WER ↓ 6.7± 0.07 6.0± 0.1 5.0± 0.1 4.9± 0.1

Table 4: Singing VC Results.

Iterations WER ↓ pMOS ↑ Identity ↑
0 20.83± 0.22 3.11± 0.01 0.7701± 0.001
1 19.12± 0.21 3.11± 0.01 0.7794± 0.001
2 17.55± 0.21 3.38± 0.01 0.7807± 0.001
3 17.56± 0.20 3.36± 0.01 0.7808± 0.001

English singing AB and SMOS test, the evaluators evaluate a
total of 230 utterances per model.

7. Results
We present the results of the objective and subjective evaluation
along with their 95% confidence interval.

7.1. Objective Evaluation

7.1.1. Hindi speech voice dataset

ASR The WER of the Hindi ASR model is reported in Ta-
ble 5. The Hindi ASR model achieves the best WER of 25.8
for iteration 3 with a relative improvement over the ASR model
trained without iterative training of 6.85%.
VC Objective test results for Hindi speech VC model is re-
ported in Table ?? which shows a decrease in WER and increase
in pMOS across iterations.

7.1.2. English singing voice dataset

ASR We evaluate our proposed framework on the English
singing voice domain and report the WER in Table 3. Simi-
lar to the Hindi speech domain we observe that after 3 iterations
the WER of the ASR model converges. We validate our pro-
posed framework and show that the WER converges to 4.9 after
3 iterations with a relative improvement over the ASR model
trained without our proposed framework of 26.8%.
VC For the VC evaluation of our proposed framework, we
report the results in Table 2. We validate our proposed itera-
tive training framework and show a relative decrease in WER
of 12.63% and relative increase in the pMOS of 8.83%. Across
iterations, the Identity metric remains nearly unchanged.

7.2. Subjective Evaluation

For the Hindi speech domain, we compare the V3 model with
the baseline V0 model based on the results of the objective eval-
uation. Similarly, for the English singing domain, we compare
the V2 model with the baseline V0 model. For subjective evalua-
tion we consider AB quality test and Similarity MOS (SMOS).
The AB quality test is constructed to compare the quality of
the samples generated using the proposed model with the sam-
ples generated using the baseline model. During evaluation,
we present one audio sample each from the baseline and pro-
posed model to the evaluator and ask them to rate their pref-
erence in terms of quality. The two audio samples are gener-
ated using the same source and reference samples. The SMOS
test is constructed to evaluate the speaker similarity of the con-

Table 5: Subjective Test Results for SMOS.

Model ASR Domain SMOS ↑
Oracle Hindi - 4.68± 0.14

Hindi Hindi Iteration 0 2.93± 0.16
Hindi Hindi Iteration 3 3.01± 0.18

Oracle Singing - 4.70± 0.09
Singing Singing Iteration 0 3.06± 0.13
Singing Singing Iteration 2 3.17± 0.14

Figure 3: Subjective AB Test results for Hindi Speech Iteration
3 vs Iteration 0 and English Singing Iteration 2 vs Iteration 0

verted sample to that of the reference sample. The evaluators are
presented the reference sample and the voice converted sample
and asked to rate the similarity of the voices between the sam-
ples on a scale of 1-5. We also evaluate the SMOS for oracle
samples in which the reference and converted are real samples
from the same speaker. The results of the subjective test for the
VC models are summarized in Table ??. As we can observe,
the proposed iterative training outperforms the baseline mod-
els on AB quality test with a preference rate of 0.66 to 0.34 on
Hindi speech VC and 0.61 to 0.39 on English singing VC while
achieving better SMOS.

7.3. Observations

By using the improved ASR for training the VC models we
expected a decrease in the WER of the samples after conver-
sion which is validated in Table 2 and ??. However, we also
observe that the quality of the converted samples improve via
the proposed framework due to decrease in artefacts and clearer
pronunciation of words. This further demonstrates that with de-
crease in WER of the ASR model, the encoder features better
capture the linguistic content which is essential for improving
the quality of VC models. Because of the improvement in the
quality of the converted samples because of less artefacts and
clearer pronunciation, we expected the VC models to act as bet-
ter data augmentation tools for training the ASR model which
is validated from the results in 3 and 5.

8. Conclusions
We present a novel iterative framework for improving voice
conversion models and automatic speech recognition models on
low resource domains and verify its applications on the Hindi
speech domain and English singing domain. We show improved
speech preservation and MOS quality of the converted samples
on voice conversion tasks as well as improved the word error
rate on ASR tasks using this framework. Future work includes
further improving the content preservation of the one-shot VC
models so as to bring WER of the VC converted samples closer
to the WER on the ground truth samples which would also lead
to better MOS quality. We would also like to investigate com-
bining the ASR and VC training in an end-to-end system.
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