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Abstract 

Speech is a valuable marker of disease onset and progression in 

amyotrophic lateral sclerosis (ALS). Acoustic and kinematic 

data have characterized speech impairments in ALS previously, 

and there is growing interest in combining these modalities in 

novel analytical platforms. We explored the use of a 

multimodal (audio/video) speech assessment pipeline in ALS 

patients with varying severities. Participants performed a 

passage reading task, and clinical outcomes of e.g., speech 

function were collected. Speech data were analyzed using a 

custom automated acoustic and kinematic pipeline. Sparse 

canonical correlation analysis (SCCA) was then used. Both 

acoustic and kinematic features loaded strongly with clinical 

data (loadings ≥|0.50|), indicating that multimodal features 

captured complementary speech function information. This 

reinforces the value of multimodal assessment techniques and 

points the way towards future remote assessment development 

steps. 

Index Terms: Amyotrophic lateral sclerosis, multimodal, 

remote assessment, validation 

1. Introduction 

Amyotrophic lateral sclerosis (ALS) is a debilitating and 

incurable motor neuron disease that frequently causes 

speech/bulbar impairments [1]. Bulbar motor impairments are 

additionally associated with both increased risk of cognitive 

impairment as well as reduced life expectancy [2]–[4]. 

Therefore, it is of paramount importance to develop methods to 

track bulbar motor dysfunction in ALS. It is an open question 

as to whether or not speech information from multiple 

modalities provides additional utility over and above single-

modality recording methods. 

Both acoustic (audio) and kinematic (video) features 

have been independently established as important in the 

assessment of bulbar ALS. Previous research has suggested that 

acoustic measures of articulation, phonation, hypernasality and 

impaired breathing are important for capturing impairments 

associated with ALS [5], [6]. Kinematic features have also been 

established for detection of ALS, particularly in the early 

disease phases [7]. Many existing studies have focused on using 

lab-based equipment, including depth (i.e., 3-dimensional/3D) 

cameras, sensor-based electromagnetic articulography, and 

cardioid microphones attached to high-performance external 

sound cards. These technologies, while highly controllable in a 

laboratory setting, are infeasible for both standard clinical 

assessment and for remote assessment. Current research efforts 

are devoted to the development and validation of remote 

methods that employ built in computer cameras and 

microphones. Remote methods have gained particular interest 

given the COVID-19 pandemic as well as their ability to 

conveniently gather high-frequency data samples. 

The majority of existing remote assessment systems 

are focused on acoustics, but there is evidence that multimodal 

information may be of value. For example, [8] employed a 

conversational artificial intelligence (AI) agent to collect data 

from ALS and healthy control participants, and reported 

excellent detection of ALS, as well as presymptomatic bulbar 

ALS patients from control participants. This study found that a 

mixture of acoustic (e.g., pause and phrase durations) and 

kinematic (e.g., lower lip velocity) features could detect ALS, 

highlighting the importance of multimodal information. 

Building upon this, it will be important to establish 

relationships between multimodal speech features and 

measures of disease status, such as clinical outcome measures.  

 To these ends, we developed a novel multimodal 

speech assessment app that can collect audio and video data 

asynchronously, with diverse acoustic and kinematic features. 

In the present study, we sought to determine whether 

multimodal data collected using this novel app could capture 

impairment across a wide range of bulbar dysfunction in a 

complementary manner. We used sparse canonical correlation 

analysis (SCCA) to characterize loading patterns across 

acoustic, kinematic, and clinical variables. We hypothesized 

that multimodal (acoustic and kinematic) features would have 

strong loadings on the same components as clinical measures 

(loadings ≥|0.50| magnitude, based on recommendations from 

factor analysis literature [9]), which would indicate 

complementary information across both modalities. 

2. Methods 

2.1. Participants and data collection (app) 

Data from 34 individuals with ALS were recorded as 

part of a larger study focused on the development of a web-

based app for the assessment of bulbar ALS. Participants were 

included on the basis of (1) a clinical diagnosis of ALS, (2) 

fluency in English, (3) a minimum age of 45 years, (4) no 

history of other neurological or speech disorders, and (5) 

absence of anarthria, i.e., complete loss of ability to speak (as 

defined by at least some remaining use of oral communication 

in daily life). All participants provided informed consent in 

accordance with the Declaration of Helsinki.  

 Data were gathered using an in-house developed 

multimodal audio/video assessment app. The app was designed 

to collect data asynchronously (i.e., data recording followed by 

upload, as opposed to streaming) in order to avoid issues arising 
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from buffering/variation in internet connection speeds as might 

occur using a platform such as Zoom. Participants used their 

own computers (MacOS ≥10.10 or Windows ≥10; current 

version of Google Chrome ver. ≥40.0). The setup of 

participants was guided by experienced speech-language 

pathologists, and was performed to minimize variation in 

lighting, pose, etc. 

The app assessment included a variety of speech and non-

speech/orofacial tasks. Speech data gathered using the app 

consisted of e.g., reading a standardized passage, sentences, 

syllables, etc. Here only 99-word passage recordings were 

analyzed,  (the “bamboo passage”, hereafter, “Bamboo”). 

Audio was collected at 48 kHz, and corresponding video was 

captured at the maximum possible for participants’ hardware 

(typically ~30 frames per second [FPS]). 

 Prior to analysis, data were subjected to manual 

quality control as well as quantitative checking of basic 

elements of data quality. The primary criteria were video frame 

rate >28 FPS and audio signals spared of excessive background 

noise. After applying these rules, we retained data from 29 

individuals (see Table 1). 

2.2. Clinical variables 

 A number of clinical/demographic variables were 

gathered that captured various aspects of clinical and motor 

function. The ALS Functional Rating Scale – Revised 

(ALSFRS-R, “FRS”) was used as a measure of overall ALS-

related functional status; specifically, the total score and the 

bulbar sub-score (“FRS-Bulb”) were collected. We additionally 

gathered the Center for Neurologic Study-Bulbar Function 

Score (BFS) and its speech sub-score (“BFS-Speech”) [10].  

Table 1: Demographics and clinical measures.  

 Values (median[IQR] unless 

specified) 

Age (years) 68 [12.3] 

N (F) 29 (7) 

FRS-Bulb  10.0 [3.8] 

FRS-Total 37.5 [7.0] 

BFS-Speech 9.0 [12.5] 

BFS-Total 27.0 [27.3] 

 

2.3. Acoustic feature extraction 

Acoustic features were extracted using a custom 

pipeline that in total captured 159 features. Our pipeline was 

focused on extracting features that had proven clinical value in 

previous works. In the following description of our pipeline, we 

subdivided features into different speech subsystems and/or 

their combinations. All features were extracted using 

Parselmouth, which is a Python-based interface to Praat 

functionality [11] and, unless otherwise specified, Praat default 

values (e.g., audio window lengths for formants) were used. 

 For many of the features calculated by our acoustic 

pipeline, it was first necessary to divide the speech sample into 

voiced- and voiceless components. Voiced segments were 

extracted using custom, automated Praat scripts and used to 

estimate the performance of the phonatory subsystem. These 

included several measures of jitter and shimmer, as well as 

harmonic/noise ratio (HNR) and fundamental frequency (Fo) 

[12], [13], and measures from the Acoustic Voice Quality Index 

(AVQI) [14]. This encompassed 32 features. 

Respiratory subsystem measures primarily focused 

on pause and phrase durations, as well as overall speaking rate. 

These features have been explored extensively in the context of 

ALS [15]–[18] and have been found to relate to disease severity 

as well as disease progression. This encompassed 7 features. 

 Articulatory features have been extensively validated 

in ALS and other neurological diseases. Formant ranges and 

trajectories (i.e., derivatives) have been utilized for dysarthric 

speech detection in a variety of clinical contexts. For example, 

the trajectory of the first and second formants have been noted 

as indices of vocal tract velocity [19], [20]. Here, we extracted 

the first five formants (F1-F5) and calculated the following 

measures: 5th percentile, 95th percentile, the range between 5th 

and 95th percentile, mean, and standard deviation (SD). We also 

extracted the first and second derivatives of the first three 

formants, and then calculated their respective descriptive 

statistics. We also extracted the mean and variance of the first 

thirteen MFCCs as well as of their first derivatives. 

Additionally, Slis et al. (2021) described the utility of 

condensing multiple MFCCs into a single value called the total 

squared change in MFCCs (tsc_mfcc) [21], which we calculated 

here. Finally, articulatory entropy [22] was extracted as a means 

to capture the working articulatory space without having to 

resort to manually calculating vowel space area using corner 

vowels. In total, this encompassed 108 features. 

 Finally, features of coordination between subsystem 

measures were extracted [23], [24]. These consisted of cross-

correlations between the first three formants, cepstral peak 

prominence, intensity, and Fo. However, to reduce our feature 

space where possible, we captured the index of the eigenvalue 

that corresponded to 95% of the variance in the cross-

correlation signal. Based on the work of [23], [24], we expected 

that a lower index would correspond to pathological speech 

patterns (i.e., the area under the eigenvalue distribution being 

shifted to the left; see previous papers for further detail on the 

expected correspondence between eigenspectrum complexity 

and health or disease status). This encompassed 12 features. 

 

2.4. Kinematic feature extraction 

Facial landmark tracking was performed using the 

Google Mediapipe framework [25], which extracted 478 3D 

facial landmarks from each frame of video. This model was 

chosen because we established that it subjectively tracked facial 

landmarks well in its opensource configuration across a variety 

of ages and skin tones, and it is also capable of running at real 

time (~30FPS) or faster on regular CPUs.  

We focused on tracking a single landmark at the 

median of the lower vermilion border of the mouth (LL) which 

has been used in clinical studies previously for tracking oral 

movements [26]. Additionally, the medial canthi of the eyes 

were tracked, as was a reference point in the centre of the 
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forehead. Canthal landmarks were used for distance 

standardization, i.e., the computation of the intercanthal 

distance (ICD) (to account for different distances between the 

face and the camera over time). The reference landmark (REF) 

was used for determining the movement of the LL point. 

Essentially,  the distance that was measured throughout the 

video was computed as (REF-LL)/ICD, where REF-LL is the 

Euclidean distance between each of the two 3D points over 

time. 

Prior to subsequent processing, facial landmarks 

were smoothed using singular spectrum analysis (SSA) [27], in 

which each of the 478*3 timeseries of landmark trajectories was 

decomposed into components, the first of which was retained 

as the cleaned version of the original signal. Filtering window 

length was set at 60ms in order to avoid over-smoothing of the 

data, which corresponded to 2 video frames. SSA has properties 

of being a data-adaptive finite impulse response (FIR) filter 

with zero-phase characteristics. 

Features that captured the clinical domains of speed 

and range of motion (ROM) were extracted from the smoothed 

data. Kinematic features included 5th, 25th, 50th, and 95th 

percentiles of absolute values of the first and second derivatives 

of position (i.e., speed and acceleration), as well as the ROM, 

which was the difference between the 95th and 5th percentiles of 

the normalized REF-LL distance. This encompassed 9 features 

in total. 

2.5. Sparse canonical correlation analysis (SCCA) 

Because we extracted diverse types of data from a 

relatively small dataset using multiple modalities (acoustic, 

kinematic, and clinical), we used a robust statistical procedure 

to understand relationships between different data modalities. 

We chose the canonical correlation analysis (CCA), which 

identifies common factor loadings across multiple datasets that 

are related to corresponding underlying variability patterns. 

Owing to the small number of samples compared to the number 

of features, we employed a penalized matrix decomposition 

(PMD) formulation of CCA [28] called sparse CCA (SCCA). 

Prior to SCCA, we rescaled features using standard 

normalization (i.e., mean of 0 and variance of 1) to ensure that 

scaling effects did not negatively impact the interpretation of 

the loadings that were found. 

Because we used a relatively small dataset, we also 

decided to restrict our considered “substantial” loadings to 

those that were ≥|0.50|. This has previously been demonstrated 

to be a conservative threshold for use in classical exploratory 

factor analysis [29]. In order to select how many latent 

dimensions to extract during analysis, we first fitted a model 

with a large number of latent variables (10) and observed the 

scores corresponding to each dimension. The first 4 dimensions 

had scores ≥0.5 (comparable interpretation to a correlation 

coefficient; scores 0 to 1, with 1 being better), and the 7th to 10th 

had scores <0.35, indicating strongly that 4 latent dimensions 

represented the optimal structure of the data for further analysis. 

After extracting the loadings from each of the 

acoustic/kinematic and clinical datasets, we then concatenated 

them and performed clustering analysis in order to extract 

patterns of loadings across features, to see which groups of 

features “behaved” similarly. Hierarchical agglomerative 

clustering was used for visualization. Analyses were performed 

in Python (v 3.8.9) using a combination of custom scripts and 

packages, such as the CCA-zoo package [30].  

 
Figure 1: SCCA loadings (only features ≥|0.50|). Features 

grouped by category. “a_” = acceleration, “apq” = amplitude 

perturbation quotient; “clin” = clinical; “comp” = coordination 

complexity; “CP” = cepstral peak prominence”; “cpps” = 

smoothed CP; “d_dx” = first derivative; “dd_dx” = second 

derivative; “hfno6000” = relative energy 0-6kHz vs 6-10kHz; 

“IN” = intensity; “med” = median; “ppq” = pitch perturbation 

quotient”; “prc” = percentile; “psd” = power spectral density”; 

“s_” = speed; “var” = variance. 
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3. Results 

Results of the SCCA analysis are summarized in 

Figure 1, and they highlight important cross-modality patterns 

in the kinematic, acoustic, and clinical data. Note that for 

brevity, Figure 1 only shows features that had loading strengths 

≥|0.50| in at least one dimension. 

The first component captured loadings across diverse 

acoustic and kinematic features. This included all kinematics, 

jitter/shimmer, MFCC features such as tsc_mfcc, features from 

the AVQI, and some additional measures of Fo variability and 

coordination complexity, as well as FRS-Bulb and the BFS 

scores. The second component had strong loadings with MFCC 

mean and variance features, intensity features, and kinematics, 

as well as FRS-Total. The third component had strong loadings 

for diverse features spanning subsets of jitter/shimmer, 

formants, AVQI, and MFCC/MFCC slope categories, as well 

as FRS-Total. Finally, the fourth component captured 

relationships between formant/formant slopes and coordination 

features. The fourth component had no strong clinical loadings. 

As a specific example of the patterns of loadings 

between features, Figure 2 depicts a biplot of loadings from the 

first and third components. From the Figure, it is clear that the 

kinematic features tended to strongly associate with one 

another. Also of note is that the kinematic features tended to 

strongly align along with the BFS measures, as well as 

tsc_mfcc, jitter/shimmer, and formant slopes. 

4. Discussion 

In this study, we evaluated the complementary 

contributions of multimodal speech data (acoustic/audio and 

kinematic/video) to capture clinical impairments in patients 

with ALS, as indexed by strong shared loadings onto canonical 

components. We found that our features from both acoustic and 

kinematic domains had strong relationships with clinical 

measures (shared component loadings ≥|0.50|), indicating 

shared contribution to a latent bulbar impairment construct. 

These results, although exploratory in nature, highlight the 

importance of multimodal assessments for capturing motor 

speech impairments in ALS. 

We observed in this study that groups of features 

from different domains associated with each other (i.e., they 

loaded onto the same canonical components strongly), and 

associated strongly with clinical measures. For example, in the 

first component, kinematic features were associated with 

various measures of jitter and shimmer, as well as clinical 

measures of bulbar function (FRS-bulbar, BFS-Total, and BFS-  

Speech), tsc_mfcc, and coordination measures. These feature 

sets have previously been found to relate to speech function in 

other populations [21], [23]. Importantly for the context of 

ALS, the first canonical component seemed to capture an 

overall bulbar impairment pattern characterized by 

perturbations to the motor control of the phonatory and 

articulatory subsystems. A previous study identified these 

subsystems as specifically important for early detection of ALS 

[31], which lends validity to the findings of our current study 

and reinforces the importance of the multimodal approach.  

Many of the loadings had strongly opposing 

directions, which simply indicated the directionality of 

association – features that were truly unassociated were 

orthogonal. This effect is best appreciated in Figure 2; features 

with opposing vector directions were strongly anticorrelated, 

whereas those at close to 90-degree angles are uncorrelated. An 

example of where this is salient is FRS-Total, which loaded 

with some acoustic and kinematic features along component 3 

(-0.89) but did not share their across-component loading 

patterns (e.g., jitter/shimmer features). 

Our study had some limitations. Our sample size was 

relatively small, and so the findings demonstrated must be 

considered as exploratory. However, analyses using other 

SCCA methods found similar patterns of loadings (data not 

shown for brevity) and so we can be reasonably confident that 

the findings depicted here represented real effects given the 

current dataset. Additionally, SCCA being an unsupervised 

measure of association, we did not perform the clinically-

relevant task of disease prediction using multimodal 

information; we leave this to future, larger, studies. 

Furthermore, we did not have an adequate sample size to 

differentiate possible patterns across male and female 

participants. This will be explored in future with more in-depth 

analyses of larger cohorts, which will be collected with less 

direct oversight of clinicians. Finally, some features such as 

formant slopes and those representing the resonatory subsystem 

will require phoneme-level automated processing. This will be 

addressed in future work.  

5. Conclusions 

We identified that a multimodal assessment of speech 

could capture kinematic and acoustic feature patterns that 

corresponded intelligibly to each other, and to clinical outcome 

measures that are of interest in ALS research. These findings 

highlight the substantial value of multimodal speech assessment 

systems in ALS, and provide justification for future studies of 

multimodal, remote speech analysis systems in ALS as well as 

various other neurological and neurodegenerative diseases. 
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Figure 2: Loading patterns across the first and third 

canonical components from the SCCA analysis. Blue 

indicates kinematic features, green indicates acoustic 

features, and red indicates clinical measures. 
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