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Abstract
Speech enhancement algorithms often focus on optimis-

ing intelligibility while neglecting other aspects of speech such
as naturalness, quality and listening effort which may affect
a listener’s experience. This paper investigates the impact of
spectral tilt on listeners’ preferences, using a new corpus of
Greek utterances. Participants adjusted spectral tilt with real-
time feedback to select their preferred tilt in quiet and in the
presence of speech-shaped noise at eight signal-to-noise ratios.
Listeners displayed distinct preferences, with a tendency to se-
lect flatter tilts with increasing noise. Preferences were not ran-
dom even for constant intelligibility, indicating that their adjust-
ments were influenced by factors beyond the need to maintain
comprehensibility. These findings have the potential to inform
the design of speech enhancement algorithms that jointly opti-
mise intelligibility and a listener’s overall experience.
Index Terms: listener preferences, SPEECHADJUSTER, spec-
tral energy reallocation, glimpses profile

1. Introduction
Listeners routinely encounter pre-recorded or synthetic speech.
While speech enhancement techniques have been used to im-
prove intelligibility in potentially challenging listening condi-
tions, these approaches typically do not account for aspects such
as naturalness and quality that may also affect a listener’s expe-
rience. Speech quality can have a significant impact on cogni-
tive effort during listening tasks, even when word recognition
is held constant. Synthetic voices can require increased effort
compared to natural speech [1, 2, 3]. Increasing spectral res-
olution in a cochlear implant simulation reduced listening ef-
fort during a dual-task paradigm [4], while attending to clear
(as opposed to plain) speech in the presence of babble noise
resulted in lower cognitive effort [5]. Consequently, it is of in-
terest to study listeners’ preferences for features such as spectral
tilt which talkers adjust naturally (resulting in a flatter spectrum)
when speaking in noisy conditions (i.e. Lombard speech).

Listener preferences provide insight into listeners’ over-
all experience with speech, taking into account factors such
as naturalness, pleasantness, and loudness. One approach to
studying listener preferences is through real-time auditory feed-
back, where listeners can modify speech characteristics un-
til they reach their preferred settings. Previous studies have
used this method to investigate preferences for formant fre-
quency/fundamental frequency relationships [6], speech rate
[7, 8], speech level [9], and local SNR [9]. Spectral modifica-
tions have been explored in studies involving individuals with
hearing loss, with investigations into preferences for broadband,
low-, and high-frequency gain [10] and degree of spectral tilt
[11]. Our study builds on recent work into spectral tilt prefer-

ences [12], but instead of using a small set of noise levels and tilt
adjustments, here we examine preferences across a broad range
of SNRs and for a different target language. These aspects of
the current study highlight the novelty of our approach which
ought to contribute to a better understanding of the effects of
spectral modifications in noisy conditions.

This study has two objectives (i) to provide a better under-
standing of the impact of masking noise on listeners’ prefer-
ences for spectral tilt; (ii) to predict listener preferences. The
latter objective is motivated by the fact that, while subjective
evaluation of speech enhancement algorithms is generally con-
sidered more reliable than prediction, it can be impractical,
time-consuming, and rules out using evaluation outcomes to op-
timise modification techniques. A large-scale validation study
demonstrated that commonly-used measures of listening effort
are not consistently or strongly intercorrelated [13]; other stud-
ies have shown that subjective measures are correlated with task
performance [14, 15].

Automatic prediction of speech characteristics beyond in-
telligibility can be a valuable tool for developing speech en-
hancement algorithms. A DNN-based listening effort predic-
tor, quantified via the degradation of phoneme posteriorgrams,
and not requiring prior knowledge of the processed speech, was
proposed in [16]. Another model to predict preferences [12]
used an objective measure of energetic masking to capture in-
telligibility and a further Gaussian component to model supra-
intelligibility factors.

In the current study participants were given the ability to ad-
just the spectral tilt of speech in quiet and in 8 levels of speech-
shaped noise. The main questions addressed are: do listener
preferences show a pattern different from intelligibility, and can
the spectral profile of the masked speech signal be used to pre-
dict listener preferences?

2. Experimental design
2.1. Listeners

Twenty-three Greek listeners (6 females; 19-28 years, mean
23.7 years) were recruited for the experiment. Listeners re-
ported no known hearing problems. An incentive of 10 euros
was given for each participation.

2.2. Sentence material

A Greek corpus [17] provided sentence material for the exper-
iments. The corpus consists of 720 semi-predictable 5-9 word
sentences in modern Greek with a similar level of difficulty to
the original English Harvard sentences [18]. Each sentence con-
tains 5 keywords for scoring. Meaningful words resembling
everyday language were used. An example is ‘Θα κόψω το
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φρούτο σε τρία ίσα μέρη.’ (‘I will cut the fruit into three
equal pieces.’); the keywords are underlined.

2.3. Speech material

A 31-year-old native Greek male talker was recruited to read
the complete corpus. The talker was asked to read each sen-
tence at a normal speaking rate and was able to repeat any utter-
ance if necessary. Recording took place in a sound studio at the
Speech Signal Processing Laboratory at the University of Crete
(Heraklion, Greece) using Pro Tools 12 software with an RME
Fireface 400 recorder. A Neumann KMS104 handheld vocal
condenser microphone (cardioid directional polar pattern) was
placed on a desktop microphone stand on a table at a fixed dis-
tance of 15 cm from the talker’s mouth. Recordings were made
at a sampling rate of 44.1 kHz. Sentences were segmented us-
ing a custom amplitude-based pause detector based on the nor-
malised envelope of the signal. The algorithm’s effectiveness
and the quality of the recordings were screened manually: sig-
nals were checked for clipping, correct utterance segmentation,
and common speaking style. Where necessary, recordings were
repeated. Sentences had a mean duration of 2.8 s (S.D. 0.3 s).
For the experiment, phrases were downsampled to 16 kHz, a 20
ms half-Hamming ramp was applied at the beginning and end of
each recording, and each stimulus was normalised to a common
root-mean-square level.

2.4. Stimuli

Stimulus design was informed by findings in [12], whose listen-
ers did not select extremely steep spectral tilts in any condition
and in the most challenging condition may have preferred even
flatter spectral tilts had they been available. Changes in spectral
tilt were achieved by filtering the speech signal with a digital fil-
ter twice (filter function in Matlab 2016b) to produce a |H(ω)|2
system. The rational transfer function for pre-emphasis was
H(z) = 1−λz−1 and for de-emphasis H(z) = 1/(1− λz−1),
with λ drawn linearly from the range [−0.16, 0.80], where pos-
itive and negative values correspond to pre-emphasis and de-
emphasis respectively. In total 25 modification levels were con-
structed (4 with spectral tilt steeper than the original, 1 with
the original spectral tilt, and 20 with flatter than the original)
corresponding to tilts in the range [−4.40, 2.66] dB/octave.

Stimuli were presented in quiet and in speech-shaped noise
(SSN) at 8 SNRs: −7.5, −6, −4.5, −3, −1.5, 0, +3, and
+6 dB. The masker was generated as in [12] by filtering random
uniform noise with the long-term spectrum of the 700 concate-
nated sentences of the female talker in the Sharvard corpus [19],
without gaps. The desired SNRs were obtained by rescaling the
noise. The amplitude of each sentence was normalized using a
fixed root-mean-square criterion.

2.5. Procedure

The experiment consisted of 5 trials in each of 9 conditions
(quiet + 8 SNRs), split into 3 blocks of 15 trials in a random
order. Each trial consisted of an adjustment phase followed by
a test phase. In the adjustment phase, sentences were presented
randomly, starting at a random feature value, with a 0.5 s gap be-
tween sentences. Participants were required to listen to at least
5 s of speech before moving on to the test phase, but they could
listen to as much speech as desired during the adjustment phase.
In this phase, a total of 250 unique sentences were presented.
Once all 250 sentences were heard, they were shuffled and were
available for presentation. This process was repeated until the

experiment was completed. The test phase evaluated intelli-
gibility via a speech perception task using the feature’s value
chosen at the end of the adjustment phase. Participants were
presented with a sequence of two sentences and asked to type
what they heard into an on-screen text box after each sentence
presentation. All the sentences in the test phase were unique.
Participants underwent a task familiarization phase consisting
of three trials (in quiet and at -7.5 dB and +6 dB SNR).

Participants modified spectral tilt in real-time using
SPEECHADJUSTER [20], receiving the instruction to adjust the
speech in order to recognise as many words as possible. Ad-
justments were made using up/down keys on a computer key-
board. Stimuli were presented at a fixed presentation level
over Sennheiser HD380 headphones. Listeners were seated in a
sound-attenuating booth located in the Speech Signal Process-
ing Laboratory at the University of Crete.

Intelligibility scores were based on the number of keywords
correctly recalled in each trial (2 test phrases x 5 keywords per
phrase). Written responses were post processed to remove ac-
cents over vowels and replace letter/diphthongs with the same
pronunciation with a unique letter.

3. Results
Listeners preferred progressively flatter spectral tilts (all flat-
ter than the original) as SNRs decreased (Fig. 1, top). A lin-
ear mixed effects model (lmer function from the lme4 pack-
age in R) with SNR as ordered factor (the quiet condition
excluded from the analysis) and participant as a random ef-
fect, indicated that SNR had a significant effect on prefer-
ences [F (7, 1142) = 25.34, p < .001]. The ability of linear,
quadratic, cubic, and reciprocal models in predicting tilt were
evaluated using leave-one-out cross-validation. The average
variance of the mean spectral tilts across the 8 iterations of the
cross-validation method was 0.173. Reciprocal and quadratic
models predict the mean listener preferences with similar accu-
racy (Fig. 2).
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Figure 1: Top: listeners’ preferred spectral tilt relative to un-
modified speech (horizontal line); middle: mean number of cor-
rectly identified keywords; lower: time spent in the adjustment
phase. Q denotes the quiet condition. Error bars represent ±
one standard error.
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Figure 2: Tilt model fits.

Listeners’ tilt preferences permitted them to maintain high
intelligibility (Fig. 1, middle) even in challenging levels of
noise with scores of 93% at -4.5 dB SNR, dropping to 85%
in the most adverse condition. A linear mixed-effects model
with SNR as a fixed effect and participant as a random inter-
cept indicated a significant main effect of SNR on intelligibility
[F (8, 1234) = 16.72, p < .001]. Post-hoc tests with Tukey
corrections demonstrated that there was no significant intelligi-
bility differences between SNRs of -4.5 dB and higher.

The increase in noise level led to an increase in the time
required by listeners to finalise their tilt preferences (Fig. 1,
lower). A linear mixed-effects model with SNR as a fixed effect
and participant as the random intercept indicated a significant
effect of SNR on adjustment time [F (8, 1234) = 31.04, p <
.001]. Post-hoc tests with Tukey correction indicated no signif-
icant differences in adjustment time between SNRs of -1.5 dB
and higher, nor between SNRs of -4.5 dB and lower.

Listener preference distributions plotted alongside intelligi-
bility (Fig. 3, left column) show distinct preferences even when
intelligibility is effectively constant, with the distributional
mass shifting from steeper to flatter spectral tilts with increasing
noise level. Two-sample Kolmogorov-Smirnov tests (ks 2samp
in scipy.stats of Python) confirmed the non-uniformity of pref-
erence distributions at all SNRs [all p < .001].

The impact of spectral tilt modifications on audibility was
evaluated using an energetic masking model, the Extended
Glimpse Proportion metric [21]. The right column of Fig. 3
shows the proportion of glimpses of the target speech at each
frequency as a function of tilt. Listeners appear to adjust spec-
tral tilt to ensure that glimpses are available across a wide range
of frequencies. This observation motivated the construction of
a model to predict listener preferences as detailed below.

4. Predicting listener preferences
We propose a model that estimates the probability of the spec-
tral tilt of a speech signal being the most preferred. Mathe-
matically, this probability is described by p(y = y∗|x), where
y denotes the spectral tilt variable while y∗ is the most pre-
ferred spectral tilt, conditioned on the glimpse profile (denoted
by x) which serves as a predictive indicator of listener pref-
erences. By Bayes’ theorem, the posterior probability p(y =
y∗|x) = p(x|y = y∗)p(y = y∗)/p(x) where p(x) corresponds
to the evidence which is independent of the spectral tilt y, while
the prior distribution p(y = y∗) is assumed to be uniform (i.e.,
uninformative) hence also independent of y. Therefore, Bayes’
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Figure 3: Left: distribution of actual preferences (blue bars and
black line), predicted preferences (magenta line), and percent-
age of keywords identified correctly at each step (points with
error bars). Right: proportion of glimpses in each spectral re-
gion as a function of spectral tilt levels (higher proportions in-
dicated by darker colours). Vertical bars represent the mean
listener preferences. Panel depict spectral tilt on the x-axis and
spectral frequency on an ERB-rate scale on the y-axis.

theorem states that p(y = y∗|x) ∝ p(x|y = y∗) with the latter
being the likelihood.

We modelled the proportion of glimpses over 33 frequency
bands, i.e., the likelihood, using a multivariate Gaussian distri-
bution. The first band was excluded from the likelihood calcu-
lation due to the negligible number of glimpses observed in that
band (Fig. 3 right column) which can lead to numerical instabil-
ity. The use of the multivariate Gaussian process allowed us to
capture inter-dependencies between the proportion of glimpses
in different frequency bands, resulting in a more realistic model
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SNR sKLD (Gr) sKLD (Sp) sKLD (Sp) [12]
+6 0.09 - -
+3 0.17 - -

0 0.12 0.57 0.08
-1.5 0.20 - -

-3 0.06 0.27 0.13
-4.5 0.24 - -

-6 0.25 0.43 0.08
-7.5 0.57 - -

Table 1: Symmetric KLD between the proposed model and ac-
tual preferences for Greek (2nd col.) and Spanish (3rd col.).
The 4th column corresponds to the results from the model pro-
posed in [12] (which tested only 3 SNRs). Lower sKLD values
indicate more similar distributions.

of the speech spectral profile. The mean vector µ and covari-
ance matrix Σ were estimated using the proportion of glimpses
of the most preferred tilt value for all 8 SNR. Given the most
preferred tilt for 80% of the Greek speech dataset (i.e., using a
training set of 576 utterances), we estimated the model parame-
ters using maximum likelihood estimation. The overall training
dataset consists of 4608 samples (8 SNRs x 576 utterances), ob-
tained by computing the corresponding glimpse profiles solely
for the most preferred tilt of each SNR condition. For testing,
20% of the Greek speech dataset (i.e. 142 utterances) was used.
During testing, the proportion of glimpses of each test utter-
ance for 33 out of 34 frequency bands, and the log-likelihood of
the spectral profile were computed. Log-likelihood values were
used to determine the similarity between the glimpse profile of
the utterance and the model’s learned distribution.

To compare the listener preferences distribution with the
distribution obtained from the total log likelihoods for each
spectral tilt value y we performed some preprocessing. We ap-
plied the softmax function to the total log likelihood, given by
L′(y) = exp(L(y)/T )/

∑
y′(exp(L(y

′)/T )) with T = 6. To
prevent the KLD from becoming infinite, we smoothed the pref-
erences distribution using a moving average filter with a win-
dow size of 3. Results (magenta line in Fig. 3 left column) in-
dicated that for most of the conditions the model fits well the
listener preferences. The symmetric Kullback–Leibler diver-
gence (sKLD) was computed (using entropy from scipy.stats in
Python) and the results are reported in Table 1.

The model was further tested on a separate dataset pub-
lished in [12] to validate its accuracy. In that experiment native
Spanish participants adjusted Spanish sentences in quiet and at
3 SNRs (-6, -3, and 0 dB). As noted earlier, our experimental
setup was similar to that study, but apart from language differ-
ences the range of spectral tilts available to listeners was differ-
ent. Results are presented in Fig. 4 and Table 1.

5. Discussion
Using a real-time adjustment method, this study measured lis-
teners’ spectral tilt preferences for speech when masked at var-
ious SNRs. Clear tilt preferences are visible at all SNRs with
listeners consistently preferring flatter spectral tilts as noise lev-
els increase. The mean preferred tilt was always flatter than
that of the original voice. These outcomes are consistent with
findings in [12] and from Lombard speech, where talkers tend
to naturally modify their speech by transferring energy to mid-
frequencies when speaking in noise (e.g., [22]). Additionally, a
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Figure 4: As for Fig. 3 (left) but for the data of [12].

glimpsing analysis suggested that listeners employed a consis-
tent goal in tilt adjustment, aiming to ensure the availability of
speech glimpses across a wide frequency range. Based on these
findings, we proposed a model to predict listener’s tilt prefer-
ences.

Listeners’ adjustments were effective in maintaining intel-
ligibility down to an SNR of nearly -5 dB. Longer adjustment
times were needed for the -4.5 dB and -3 dB SNRs compared to
less noisy conditions. The longer adjustment time required may
indicate an increase in the cognitive effort required to process
speech in noise, or the difficulty in finding an effective compro-
mise between choosing a signal that sounds natural (i.e. with tilt
close to the original) or one that preserves audibility across as
much of the spectrum as possible. Data in noise is lacking, but
Moore and Tan [23] found that in quiet, spectral tilt modifica-
tions have a negative impact on naturalness, particularly when
applied over the entire frequency range.

Based on our observations of how listeners tend to choose
spectral tilt in noise, we proposed a model to estimate the like-
lihood of a speech signal being preferred. An alternative ap-
proach for predicting listener preferences was suggested in [12],
which involved computing glimpses for each preference level
using the extended glimpse proportion metric [21] and fitting
the derived distribution to the listener preferences distribution.
One distribution was fit in each different noise condition. How-
ever, this approach has a limitation in predicting preferences
for unseen SNRs or spectral tilts. In contrast, our model is not
tailored to specific listener preference distributions, making it
more capable of generalisation, as demonstrated for the Span-
ish data of [12]. While a comparison of columns 3 and 4 of Tab.
1 indicates that the current model performed slightly worse than
that reported in [12], a fairer comparison would involve training
the model used in the Spanish experiment with Greek data and
then comparing the predicted listener preferences with the ac-
tual Spanish listener preferences. Further research is necessary
to assess the generalisability of the current model.
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