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Abstract
The performance of automated audio captioning (AAC) has been
improved considerably through a transformer-based encoder and
transfer learning. However, their performance improvement is
constrained by the following problems: (1) discrepancy in the
input patch size between pretraining and fine-tuning steps. (2)
lack of local-level relations between inputs and captions. In this
paper, we propose a simple transfer learning scheme that main-
tains input patch sizes, unlike previous methods, to avoid input
discrepancies. Furthermore, we propose a patch-wise keyword
estimation branch that utilizes an attention pooling method to ef-
fectively represent both global- and local-level information. The
results on the AudioCaps dataset reveal that the proposed learn-
ing scheme and method considerably contribute to performance
gain. Finally, the visualization results demonstrate that the pro-
posed attention-pooling method effectively detects local-level
information in the AAC system.
Index Terms: audio captioning, transformer, transfer learning,
multiple instance learning, attention pooling

1. Introduction
Automated audio captioning (AAC) is the automatic genera-
tion of contextual descriptions of audio clips. The AAC system
describes the environmental events of audio, instead of the lin-
guistic content, for use in applications such as advanced subtitle
generation that is not provided by the script, aiding hearing-
impaired people in understanding surrounding sounds, and auto-
matic content summarization.

Typically in AAC, a sequence-to-sequence framework is
used, that comprises an encoder extracting acoustic features
from the audio input and a decoder generating captions using the
extracted features. Recurrent neural networks (RNNs) and con-
volutional neural networks (CNNs) have been widely adopted
as encoder architectures [1, 2, 3, 4, 5]. Moreover, RNN-based
architectures have been used as decoder architectures [1, 2, 5].
Recently, transformers have been proven to outperform existing
architectures in natural language processing (NLP), computer
vision, and speech [6, 7, 8]. Therefore, the adoption of a trans-
former for AAC has attracted considerable research attention
[3, 4, 9]. Mei et al. [9] proposed a full transformer structure
called an audio captioning transformer (ACT) that achieved state-
of-the-art performance on the AudioCaps dataset [10]. However,
the performance gain of ACT is still limited owing to the fol-
lowing two problems: discrepancy in the patch size and lack of
relations between inputs and captions.

First, as AAC tasks have limited labeled data, it has become
a common approach to pretrain the encoder, including the CNN
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and transformer, on audio tagging tasks. In particular, as the
transformer is generally known to require more training data than
the CNN [7], pretraining and transfer learning approaches are
essential for obtaining general audio representations. Therefore,
in the ACT encoder based on the vision transformer (ViT [7])
architecture, the parameters are initialized using the weights of
data-efficient image transformers (DeiT [11]) pretrained on Ima-
geNet. Subsequently, the ACT is trained sequentially on audio
tagging and AAC tasks. ACT demonstrates the potential of the
pure transformer structure with pretraining; however, ACT does
not achieve significant performance improvements compared
to the combination of CNN and transformer structures. This
is attributed to the input discrepancy between the pretraining
and fine-tuning stages. To be specific, DeiT uses 16 × 16 patch
sizes during training, whereas ACT uses patches of 64 × 4 sizes
split along the time axis of the spectrogram. Although this split
scheme can preserve frequency-wise information, it may induce
discrepancies that impede performance improvement during the
fine-tuning step due to differences in the learned relationships
between patches.

Second, the learning process of AAC is generally performed
between an audio clip and the entire caption label, and between
input patches and the entire caption label in the case of ACT.
The entire caption label operates as a global-level label which
consists of successive local-level sound event descriptions. This
hierarchy indicates that the components of the global-level la-
bels can operate as local-level labels. Since the general learning
process of AAC predicts only global-level labels, the ability of
the model to capture the relationships between inputs and local-
level labels is limited, leading to suboptimal performance. One
method for strengthening the relationship with local-level labels
is to add a keyword estimation branch to the AAC framework
[12, 13, 14, 15, 16]. Existing studies extracted nouns and verb
keywords, which are components of sound event descriptions,
from the entire caption. By predicting keywords as an auxiliary
task, the model can learn the relationship between inputs and
local-level information. Among existing studies, some studies
[12, 13, 15] have revealed that estimating keywords aids a net-
work to generate captions, whereas others [14, 16] have revealed
that it may not work universally under varying conditions. This
limited improvement may occur owing to the absence of key-
word ground truth matching with frame-level inputs. To address
this problem, existing methods predict frame-wise keywords and
then aggregate them along the time axis by using max or average
pooling. However, their aggregating methods are inappropriate
for representing the relations with local-level labels due to the
following limitations: (1) Max pooling can result in a penalty of
only one frame in a clip, potentially ignoring the contribution of
other frames. (2) Average pooling can ignore events that have
relatively short durations compared to the duration of the clip

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

2128 10.21437/Interspeech.2023-619



Figure 1: The overall framework of the proposed method.

[17, 18, 19].
Based on the investigation of the two aforementioned key

problems in AAC, we propose a training approach that main-
tains the input patch size (16 × 16) from the pretraining to
the fine-tuning stages, thereby maximizing the advantage of
the pretraining stage. In addition, we design a patch-wise key-
word estimation method to enhance the ability of the model to
capture the relationship between input patches and keywords
representing local-level information. To aggregate patch- to clip-
level keyword estimations without biased information, we utilize
an attention-pooling method. Experimental results on the Au-
dioCaps dataset reveal that the proposed methods significantly
improve performance compared to that of the baseline. Finally,
through visualization, we verify how well the proposed key-
word estimation method can represent local-level information
compared to other methods.

2. Method
2.1. Acoustic Encoder

Given the acoustic signal, the AAC system encoder takes the mel-
spectrogram of that as the input. The encoder aims to provide
subsequent branches with a hidden representation that encodes
information entailed by the acoustic context. We use AST [8]
as the architecture of the encoder, which intuitively inherits the
ViT approach [7] in the acoustic data processing domain. As de-
picted in Figure 1, the input mel-spectrogram is first split into a
sequence of 16× 16 patches. The patches are linearly projected
onto embedded representations and then processed by trans-
former encoder blocks [6]. Each transformer block comprises a
multi-headed self-attention layer and a feed-forward layer, and
both are followed by normalization and residual connection.

To take advantage of transfer learning, similar to priors
[3, 4, 9], we exploit an acoustic encoder pretrained on AudioSet
[20] with an audio tagging task. Among ViT-oriented acoustic
encoders, the pretrained weight of PaSST [21] is used to ini-
tiate transformer blocks. In addition, to improve the training
efficiency and boost the robustness of the network, Patchout [21]
scheme is applied during the training phase.

2.2. Linguistic Decoder

The decoder is responsible for generating captions from informa-
tion extracted by the acoustic encoder. Taking the output from
the encoder, it predicts a sequence of linguistic tokens depicting
the circumstances corresponding to the acoustic signal input. We
use a typical transformer decoder proposed by [6], as the archi-

tecture has been successful in several NLP domains, including
AAC [3, 4, 9].

Given the input audio mel-spectrogram x ∈ Rt×f , which
comprises f frequency features for t frames, along with the en-
coder (fenc) and decoder (fdec), we formulate the autoregressive
estimation of the decoding branch as follows:

ŷn = fdec(ŷ0, ..., ŷn−1, fenc(x)), (1)

where ŷn is a probability distribution over vocabulary, fed
through a softmax activation function, except ŷ0 = < sos > the
special token to initiate the decoder to generate tokens. There-
fore, when the ground truth caption comprises a sequence of
M tokens, [y1, ..., yM ], the training objective of the decoding
branch is to minimize the cross-entropy loss, as follows:

Lstandard = − 1

M

M∑

m=1

log p(ym|ŷm) (2)

We use the teacher forcing strategy during model training, which
is to condition the ground truth [y1, ..., ym−1] for ŷm decoder
prediction.

2.3. Keyword Estimation

To strengthen the ability of the model to capture local-level
information from inputs, we add a keyword estimation branch
to the AAC system, as displayed in Figure 1. As an absence
of keyword ground truth matching with frame-level or patch-
level inputs, we adopt multiple instance learning (MIL) schemes.
MIL, which is a useful approach for situations in which only
a bag-level label is available for a bag-level input comprising
multiple instances, has been widely used in various tasks, such
as image classification [22, 23], sentiment analysis [24], medical
diagnosis [23, 25], and audio tagging [17, 26].

To incorporate MIL into our framework, we formulate an
effective embedding-level MIL approach, as follows. Given a
bag-level input (mel-spectrogram x) comprising N instances
(patches), N patch-level representations [x1, x2, ..., xN ] are ex-
tracted by the encoder and passed to the keyword branch. In
the keyword branch, a simple neural network fψ consisting of a
linear layer, layer normalization, and ReLU transforms xn into
a low-dimensional embedding hn as follows:

hn = fψ(xn) ∈ RD, (3)

where D denotes hidden dimensions. Then, to obtain a bag-level
representation z, we utilize attention-based MIL pooling [22],
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Table 1: Evaluation results on the AudioCaps test dataset. † indicates that the Patchout training technique is employed for cost-efficient
training. TF denotes transformer decoder. For all metrics, higher scores are better. All metrics are reported in percentile (%) values.

Model Params (M) BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr SPICE SPIDEr

Transfer Learning
AST (128 × 2) + TF (from scratch) 104.6 59.2 42.5 30.0 20.9 18.3 42.0 45.6 13.0 29.3
AST (16 × 16) + TF (from scratch) 104.3 58.9 41.6 29.3 20.2 17.8 41.4 41.2 12.0 26.6
AST (128 × 2) + TF (from pretrained) 104.6 69.5 52.9 38.7 27.6 23.0 48.4 68.1 16.8 42.5
AST (16 × 16) + TF (from pretrained) 104.3 70.1 52.9 38.5 27.2 23.5 49.7 71.8 17.2 44.5

Keyword Branch
†AST (16 × 16) + TF (w/o Keyword) 104.3 70.1 54.0 40.2 28.8 23.4 50.5 71.9 17.6 44.7

+ Max Pooling 104.9 70.3 53.4 39.3 28.3 23.7 50.1 73.1 17.8 45.4
+ Average Pooling 104.9 70.6 53.7 39.6 28.4 23.9 49.9 72.9 17.9 45.4
+ Attention Pooling (ours) 105.0 71.6 54.4 39.9 28.5 24.2 50.4 76.4 18.0 47.2

which enables adaptive aggregation according to the inputs, as
follows:

z =
N∑

n=1

αnhn (4)

Here, the attention weight αn, that is, the importance of each
patch on the keywords, is measured as follows:

αn =
exp(WT tanh(UhTn ))∑N
n=1 exp(W

T tanh(UhTn ))
, (5)

where W ∈ RL×1 and U ∈ RL×D are trainable parameters.
Finally, the predicted keyword class probability ŷ is obtained by
applying a linear layer with a number of nodes equal to the num-
ber of pre-defined keywords (K) to the clip-level representation
z. As keyword prediction is a multi-label classification problem,
the objective function is defined as follows:

Lkeyword = −
K∑

j=1

yj · log ŷj + (1− yj) · log(1− ŷj) (6)

The total loss is defined by combining the standard and keyword
branch losses as follows:

Ltotal = Lstandard + β × Lkeyword, (7)

where β denotes the keyword branch weight. In this way, the
proposed method aids the network to capture not only global-
level information but also local-level sound event information.

3. Experiments
3.1. Experimental Configuration

Datasets The AudioCaps dataset [10], the largest audio caption-
ing dataset including approximately 50k audio samples obtained
from AudioSet [20] and human-annotated descriptions, is used
for validation. The AudioCaps dataset is divided into training,
validation, and testing datasets. The training set consists of
49,274 audio clips with one caption per clip, and the validation
and test sets consist of 494 and 957 audio clips with five captions
per clip, respectively.
Evaluation metrics To evaluate the proposed method, we adopt
machine translation and captioning metrics, which are widely
used in AAC. For machine translation metrics, BLUEN [27] is
a modified form of n-gram precision that integrates a brevity
penalty to evaluate prediction accuracy. It does so by measuring
the degree of n consecutive word matches between predicted and
reference captions. ROUGEL [28] computes an F-measure by
identifying the longest continuous subsequence in both sentences.

METEOR [29] calculates an F-measure by considering several
factors, such as stem- and word-level overlap, synonyms, and
unigram precision. For captioning metrics, CIDEr [30] considers
the semantic similarity between a set of reference captions and a
candidate caption by computing the geometric mean between the
n-gram and cosine similarity scores. SPICE [31] uses semantic
scene graphs obtained from captions to validate the caption
quality based on their semantic content. SPIDEr [32], which is
used to measure the official ranking in the DCASE challenge is
the average of SPICE and CIDEr scores.
Implementation details We use an epoch of 30 and a batch
size of 8. We adopt an Adam optimizer and its learning rate
is 1×10−5. We use 12 layers, 12 heads, and a hidden size
of 768 for the acoustic encoder. The linguistic decoder has 4
layers, 512 hidden dimensions, and 8 heads. For the keyword
estimation branch, the hidden size is 512. As training strategies,
we exploit the label smoothing with a ratio of 0.1, spectrogram-
based augmentation [33], and structured patchout with time
frames and frequency bins of 40 and 4 respectively. Furthermore,
we extract the input features, the mel-spectrogram, based on a
sample rate of 32,000, window size of 25 ms, hop size of 10
ms, and mel bins of 128. Regarding the caption preprocess,
we take the same tokenization process as [9], and the process
makes the vocabulary with 5,277 unique words. Based on this
vocabulary, we use the natural language toolkit (NLTK) [34] to
obtain keywords from captions. We filter only the noun-related
phrases and create a keyword vocabulary with the top K = 500
keywords based on their frequency in the dataset. The loss
function weight β is set to 5. For K and β, the optimal values
were determined through empirical experiments and used in this
study. Finally, captions are generated using a beam search size
of 3.

3.2. Results

Table 1 presents the experimental results of the proposed method
on the AudioCaps dataset. Since the AST exhibits remarkable
performance as an encoder in audio classification tasks, we
adopt it as the baseline encoder structure instead of the encoder
proposed in ACT [9].

First, to verify the effect of aforementioned discrepancy, we
train the model using different patch sizes with the same area
size during the AAC training step. As listed in the first block of
Table 1, when starting from scratch, the model trained using a
patch size split along the time axis from the spectrogram (i.e.,
128 × 2) outperforms the model trained using a size of 16 × 16.
In contrast, when starting from pretrained weights, the model
trained using the same patch size (i.e., 16 × 16) as in the pretrain-
ing step outperforms the model trained using a different patch
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Table 2: Comparison with existing state-of-the-art methods on the AudioCaps test dataset.

Model Params (M) BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr SPICE SPIDEr

CNN + TF [4] - 64.1 47.9 34.4 23.6 22.1 46.9 69.3 15.9 42.6
ACT-M + TF [9] 108 65.3 49.5 36.3 25.9 22.2 47.1 66.3 16.3 41.3
BART + YAMNet + PANNs [35] 494 69.9 52.3 38.0 26.6 24.1 49.3 75.3 17.6 46.5
AL-MixGen [36] 108 69.3 52.9 38.9 28.3 24.1 49.9 75.5 17.7 46.6
†AST + TF + Attention MIL (ours) 105 71.6 54.4 39.9 28.5 24.2 50.4 76.4 18.0 47.2

Figure 2: Heatmap of magnitude (l2 norm) of the patch representations extracted through the encoder. We randomly selected two samples
from the test set and reconstructed sequence patch representations into a spatial spectrogram for visualization.

size (i.e., 128 × 2). The results suggest that although preserving
the frequency-axis information can be crucial, it does not fully
leverage the benefits offered by pretrained knowledge. Alterna-
tively, pretraining 128 × 2 patch-based models on ImageNet and
AudioSet is possible but is computationally expensive. Thus,
using 16 × 16 patches is the most practical and optimal solution
for AAC training.

Next, we validate the efficacy of the proposed attention pool-
ing method for keyword estimation in AAC. As reported in the
second block of Table 1, conventional pooling methods exhibit
comparable performance compared to the baseline without a key-
word estimation branch, whereas the proposed method achieves
significant improvement. This suggests that the efficacy of ex-
isting pooling methods is constrained, whereas attention-based
pooling provides proper information that benefits AAC systems
by adequately detecting local-level events.

Further, we compare the proposed method with four state-
of-the-art methods [4, 9, 35, 36]. The results are presented in
Table 2. The model trained using the proposed method signifi-
cantly outperforms state-of-the-art models in terms of all metrics
with fewer model parameters, achieving a new state-of-the-art
performance on the AudioCaps dataset.

3.3. Discussion

We attempt to explain the effectiveness of the proposed attention-
based pooling method in terms of the magnitude (l2 norm) of the
patch representations. As depicted in Figure 2, existing pooling
methods (i.e., max and average) cannot accurately detect the
region of sound events. In contrast, the baseline and proposed
method could adequately detect the main sound events. These
results suggest that existing pooling methods are inadequate

for using local-level information effectively. Regarding false
positives, the baseline model can adequately capture primary
sound events but exhibits a tendency to produce false positives
in areas without any sound events, whereas the proposed method
is effective in accurately detecting sound event regions without
considerable false positives. Finally, the results suggest that
the proposed attention-based pooling is a suitable aggregation
method for the keyword estimation branch, which aids a network
to capture local-level information in the AAC system.

4. Conclusions

In this work, we proposed two strategies to improve the perfor-
mance of transformer-based networks in AAC: (1) Preventing
discrepancies resulting from the difference in input patch size
between the pretraining and fine-tuning steps. (2) Suggesting
a patch-wise keyword estimation branch that utilizes attention-
based pooling to adequately detect local-level information. Ex-
perimental results on the AudioCaps dataset indicate that the
proposed methods significantly improve the performance com-
pared to the baseline. Furthermore, the model trained using the
proposed methods outperforms existing state-of-the-art methods.
Finally, we visually verified the effectiveness of the proposed
keyword estimation pooling method. The results reveal that the
proposed method effectively detects local-level information with
minimal false positives compared to other methods.
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