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Abstract
This paper proposes an unsupervised anomalous sound detec-
tion method using sound separation. In factory environments,
background noise and non-objective sounds obscure desired
machine sounds, making it challenging to detect anomalous
sounds. Therefore, using sounds not mixed with background
noise or non-purpose sounds in the detection system is de-
sirable. We compared two versions of our proposed method,
one using sound separation as a pre-processing step and the
other using separation-based outlier exposure that uses the er-
ror between two separated sounds. Based on the assumption
that differences in separation performance between normal and
anomalous sounds affect detection results, a sound separation
model specific to a particular product type was used in both ver-
sions. Experimental results indicate that the proposed method
improved anomalous sound detection performance for all Ma-
chine IDs, achieving a maximum improvement of 39%.
Index Terms: Anomalous sound detection, sound separation,
unsupervised learning, outlier exposure

1. Introduction
Anomalous sound detection (ASD) is a technique for identi-
fying whether an observed sound is normal or anomalous [1].
This technique makes it possible to detect anomalous operating
sounds when a machine malfunctions and helps in monitoring
the machine’s condition. It is challenging to collect anomalous-
sound data in the real world because such sounds are rare [2].
Anomalous sounds also have a wide range of sound variations,
and there is likely to be a large amount of unknown data, making
supervised learning of ASD difficult. Therefore, ASD is usually
conducted using an unsupervised method that uses only normal
sounds during training. During inference, the anomaly degree
is calculated on the basis of how well the observed sounds fit
the learned distribution. If the anomaly exceeds a pre-defined
threshold, it is judged as an anomalous sound. In the Detec-
tion and Classification of Acoustic Scenes and Events (DCASE)
2020 Challenge Task 2 [2], several ASD methods using outlier
exposure (OE) were proposed. In OE, neural networks classify
the Machine-type and Machine-ID of input sounds [3, 4, 5, 6],
detect the machines’ motion segments [7], and calculate the
anomaly degree in accordance with their accuracy. ASD with
OE is based on the assumption that unknown anomalous sounds
that have not been used for training are challenging for classify-
ing the machine type (Machine-type) or product type (Machine-
ID) or to detect operating intervals.

In a factory environment, machines other than the target
machine are in operation [8]. The observed sounds include
noise, which decreases the performance of ASD. If the dif-
ference between normal and anomalous sounds is slight, ASD

becomes even more difficult. Therefore, it is considered ade-
quate to remove noise and non-target sounds from the observed
sounds and use them for ASD. A semi-supervised non-negative
matrix factorization (NMF) [9] method of extracting the target
machine sound using a pre-trained basis of environmental noise
is used to pre-process ASD [10]. However, machine sound is
difficult to define independence, sparsity, and low rankness,
which may make sound separation (SS) difficult when using
methods such as NMF. Poor separation accuracy can have a
significant impact on later ASD results. In addition, when per-
forming ASD, a human must listen to and analyze the machine
sounds. Therefore, separating the target machine sounds is nec-
essary.

We propose an ASD method that uses deep learning for
SS. There are two versions of this method. The first ver-
sion uses deep-learning-based SS as a pre-processing step for
conventional unsupervised ASD and detects anomalous sounds
from the separated sounds. Since only normal sounds are used
when training the SS model, the SS model can separate nor-
mal sounds. If the model is trained to separate for a specific
Machine-ID, even for the same Machine-type, separation be-
comes problematic if the target Machine-ID is different, and
the separation of anomalous sounds, which are an unknown do-
main, becomes more difficult. It is predicted that normal sounds
will be cleanly denoised. In contrast, anomalous sounds will not
be sufficiently denoised or distorted, and the different separation
between normal and anomalous sounds is expected to be used
for ASD. The second version uses OE based on SS. In OE based
on SS, Two SS models are used: one for a specific Machine-type
and the other for a specific Machine-ID. The anomaly degree is
calculated on the basis of the error of the separated sounds out-
put from each model.

2. Problem description
2.1. Unsupervised anomalous sound detection

ASD calculates the anomaly level on the basis of the acoustic
feature X of the observed sound. The anomaly calculator A
with parameter θ outputs the anomaly degree Aθ(X). If Aθ(X)
is larger than the preset threshold ϕ, it is judged as an anomaly
with the following equation.

Decision =

{
Anomaly (Aθ(X) > ϕ)
Normal (otherwise)

(1)

Unsupervised ASD is based on outlier detection, and methods
using autoencoders (AEs) [11] have been widely used. AEs
learn encoders and decoders so that the difference between the
input and output of the neural network (reconstruction error)
is reduced. When a normal sound is input, the reconstruction
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Figure 1: Overview of ASD after SS Figure 2: ASD using separation-based OE

error becomes small, but when an anomalous sound is input, the
reconstruction error becomes large. The input and output errors
are used to calculate the anomaly degree and execute ASD.

2.2. Sound separation

SS is a technique for separating a sound mixture into its indi-
vidual sources [12]. Most of the research on SS has focused on
speech [13, 14] and music [15, 16]. Universal sound separation
(USS) [17, 18, 19] has been attracting attention because it tar-
gets various sounds, not limited to speech and music. Masked-
based methods are mainly used in USS. In masked-based SS,
a mask-prediction network estimates the mask by encoding the
x ∈ RL mixture with signal length L and inputting it to the
mask-prediction network. The mask process separates the en-
coded mixtures, and the decoder resynthesizes the separated
source yn ∈ RL [20]. Let n = 1, 2, · · · , N denote the in-
dex of the sound source and N the number of sound sources.
The separation procedure is formulated as

yn = Dec(Enc(x)⊙Mn(Enc(x))), (2)

where Enc(·),Dec(·) are the encoder and decoder, respectively,
⊙ is the element-wise multiplication, and Mn(·) is a mask pre-
dicted by the network for each source. Various networks have
been proposed as masked-based SS models [17, 21, 22].

3. Proposed method
Previous studies have stated that it is difficult to obtain ground
truth in advance [10]. This study assumes that it is possible
to record ground truth in situations where there is little or no
background noise, such as before the start of factory operations.
This assumption is made because recording sound with only
the target machine is possible since no other machines operate
before the plant starts.

3.1. Anomalous sound detection after sound separation

With this version of the proposed method, two models, SS and
ASD are serially connected to calculate the anomaly level di-
rectly from the input sound. By isolating the target machine
sound before ASD, clean sound without noise can be used for
ASD, and it may be possible to detect slight differences between
normal and anomalous sounds. A schematic of this version is
shown in Figure 1. The mixed sound is the first input, and the
machine sound separated using the SS model in the previous
stage is the output. The acoustic features extracted from the sep-
arated sounds are input to the ASD model in the second stage to
determine whether the sound is normal or anomalous.

The SS and ASD models are trained independently and con-
nected only during inference. The training of the SS model re-
quires data on the combination of the mixture and ground truth

of the target machine sound. The model takes a mixture of
sounds and trains the output-separated sounds so that they ap-
proach the ground truth. SS is used as a pre-processing step for
ASD, so the ASD model is trained using the sound mixtures as
with the conventional method that does not use SS. The ASD
model learns so that the output reconstructed from the sound
mix is close to the input. In both SS and ASD models, only
normal sounds are used during training.

3.2. Separation-based outlier exposure

The separation-based OE version of the proposed method uses
two SS models: Machine-ID-wise Separation (ID-Sep) model,
which separates normal sounds of a specific Machine-ID, and
Machine-type-wise Separation (Type-Sep) model, which sepa-
rates normal sounds of a specific Machine-type. An overview
of this version is shown in Figure 2. The mixture is input to
the ID-Sep and Type-Sep models, and the separated sound is
output from each model. On the basis of the error between the
two separated sounds, the anomaly degree of the input sound is
calculated. The neural network only executes SS and uses the
observed SS results. It is possible to separate normal sounds in
the learned known domain, but separating anomalous sounds in
the unknown domain is challenging. It is expected that the re-
sults of the separation of normal and anomalous sounds can be
used for ASD.

The ID-Sep model overfits the normal sound of a partic-
ular Machine-ID, so the performance of separating anomalous
sounds should significantly degrade. The Type-Sep model over-
fits a particular Machine-type regardless of the Machine-ID, so
the separation performance of the anomalous sound is lower.
However, it should be lower than with the ID-Sep model. There
is no significant difference between the models in separation
performance for normal sounds, which are also used for train-
ing. In other words, if the error of each separation is small, the
sound is judged to be normal, and if the error is significant, it is
judged to be anomalous. The error between the two separated
signals is calculated using the mean squared error (MSE).

The ID-Sep and Type-Sep models are trained independently
and on different data since they have different separation goals.
The ID-Sep model targets a specific Machine-ID, so it is trained
to remove the noise and sounds of other Machine-IDs. There-
fore, it is trained on data that contain a mixture of Machine-IDs
that are not the target Machine-IDs. Since the Type-Sep model
targets a specific Machine-type regardless of the Machine-ID, it
only needs to remove noise. To train the Type-Sep model, data
in which only noise is mixed are used. The dataset is described
in Section 4.1.
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Figure 3: Example spectrograms for section 02 of valve.

Table 1: Structure of autoencoder

Encoder

Linear (in:640 , out:128)
Linear (in:128 , out:128)
Linear (in:128 , out:128)
Linear (in:128 , out:128)
Linear (in:128 , out:8)

Decoder

Linear (in:8 , out:128)
Linear (in:128 , out:128)
Linear (in:128 , out:128)
Linear (in:128 , out:128)
Linear (in:128 , out:640)

4. Experiment
4.1. Dataset

Although the mixture sound and corresponding ground truth are
necessary for learning and evaluating SS, the currently avail-
able datasets for anomaly detection do not include ground truth.
Therefore, we created a dataset that contains clean machine
sounds and factory environmental noise recorded during the
creation of the dataset MIMII DG [23] for ASD. The target ma-
chine sounds were slider and valve, and the Machine-ID data of
sections 00, 01, and 02 of these components were used for each
Machine-type. The SNR of the mixing was randomized from
{-5, 0, 5}dB.

The data for training the ID-Sep model consisted of three
mixed patterns. For example, when section 00 was the target
Machine-ID, the following was used, and the same for the other
Machine-IDs.

1. section 00 + noise
2. section 00 + section 01 + noise
3. section 00 + section 02 + noise

There were 990 data items for each pattern, creating a total of
2,970 data items for one Machine-ID.

The Type-Sep model training data mixes only noise with
the target machine sound, as in the first mixing pattern of the
ID-Sep model training data. There were 990 data items for
each Machine-ID, and 2,970 data items were created for one
Machine-type.

The evaluation data were the same as the Type-Sep training
data in terms of the mixing pattern. A total of 100 data items

were created, 50 normal sounds and 50 anomalous sounds, for
each Machine-ID.

4.2. Training and evaluation setup

We use Conv-TasNet [21] as the SS model. Conv-TasNet is
an end-to-end SS model that uses sound waveforms for input
and output. The number of output sources is set to 1, and the
other model structures are based on the best-performing version
of [21]. The batch size is 2, Adam optimizer is used, and the
learning rate is 0.0001. The loss function uses the L1 loss of
the output source and ground truth, and the model was trained
for 50 epochs per Machine-ID for the ID-Sep model and per
Machine-type for the Type-Sep model. Separation performance
was evaluated on the basis of scale-invariant signal-to-distortion
ratio improvement (SI-SDRi), which is the difference between
the SI-SDR of the estimated sound and ground truth and that of
the mixture and ground truth. The SI-SDR is calculated as

SI-SDR(s, ŝ) = 10 log10
∥αs∥2

∥αs− ŝ∥2 , (3)

where s is the ground truth and ŝ is the estimated signal or mix-
ture. Also, α = ⟨s, ŝ⟩/∥s∥2 and ⟨s, ŝ⟩ are the inner products
of s and ŝ, respectively.

The ASD model uses AEs and trained on the same data as
the Type-Sep model. The sound waveforms are transformed
into a log-Mel spectrogram with a frame size of 1024, hop size
of 512, and 128 Mel bins. The five frames are concatenated
to generate a 640-dimensional feature vector that is input to the
autoencoder. The structure of the autoencoder is shown in Table
1. Batch normalization and a rectified linear unit are inserted
after each linear layer except the final layer. The batch size
was 512, Adam optimizer was used, and the learning rate was
0.001. We used the MSE loss of the input and output vectors
for the loss function and trained 100 epochs for each Machine-
type. ASD performance was evaluated on the basis of the area
under the receiver operating characteristic curve (AUC), which
is defined as

AUC =
1

NnNa

Nn∑

i=1

Na∑

j=1

H(Aθ(x
a
j )−Aθ(x

n
i )), (4)

where H(x) returns 1 if x > 0, and 0 otherwise. Here,
{xn

i }Nn
i=1 and {xa

j }Na
j=1 are the test data for normal and anoma-
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Table 2: SI-SDRi for each separation model [dB]

(a) Slider

section 00 section 01 section 02
N A N A N A

Type Sep 5.15 2.99 5.35 3.70 4.60 -0.48
ID Sep 4.84 -0.46 4.70 -0.36 6.37 0.95

(b) Valve

section 00 section 01 section 02
N A N A N A

Type Sep 12.30 7.48 6.50 6.32 10.20 6.22
ID Sep 11.64 6.22 6.58 5.79 10.37 -0.32

Table 3: AUC with SS [%]
(a) Slider

Machine-ID Avg00 01 02
Baseline 50.36 55.52 58.60 54.83
After-Type-Sep 57.08 77.32 20.72 51.71
After-ID-Sep 77.08 92.84 89.56 86.49
Separation-based OE 85.08 79.92 73.32 79.44

(b) Valve

Machine-ID Avg00 01 02
Baseline 50.72 55.60 56.60 54.31
After-Type-Sep 78.00 58.60 67.56 68.05
After-ID-Sep 79.44 56.96 96.00 77.47
Separation-based OE 14.48 59.24 91.64 55.12

lous sounds, respectively, and Nn and Na are the number of
normal and anomalous-sound test data items, respectively.

4.3. Experimental results

The SS results are listed in Table 2. In Table 2, N and A
mean normal and anomalous sounds, respectively. Both the
slider and valve performed well in separating normal sounds
for many Machine-IDs. Since only normal sounds are used in
training, even sounds of the same Machine-type are challenging
to separate if they are anomalous sounds. When section 02 of
the valve was separated using the ID-Sep model, there was a
10.69dB difference in separation performance between normal
and anomalous sounds. Comparing the separation performance
between the ID-Sep and Type-Sep models, there was not much
difference in the performance for normal sound, but there was
a significant difference for anomalous sound. However, in sec-
tion 01 of the valve, the difference in separation performance
between normal and anomalous sounds and between the ID-
Sep and Type-Sep models was slight. The reasons may be that
learning is complex or that the difference between normal and
anomalous sounds is slight. Example spectrogram for section
02 of the valve are shown in Figure 3.

The results of ASD with SS are shown in Table 3. ”After-
Type-Sep” and ”After-ID-Sep” signify the version of the pro-
posed method that uses SS as a pre-processing step for ASD,
using the Type-Sep and ID-Sep models, respectively. Baseline
was a conventional method that does not use SS. In most cases,
the AUCs of the proposed versions were better than that of the
baselines. Both proposed versions improved ASD performance
for sections 00 and 01 of the slider and sections 01 and 02 of
the valve, and section 02 of the valve improved ASD perfor-
mance by 39.4% at most. These results indicate that using sep-
arated machine sounds improves ASD performance. However,
for section 02 of the slider, the ASD performance decreased
with After-Type-Sep. Table 2 shows that the SS performance of
section 02 of the slider is relatively low for normal sounds with
Type-Sep. Therefore, it is considered that distortion occurs in
the separated normal sounds, and the anomaly degree calculated
during ASD increases, resulting in false detection as an anoma-
lous sound. For section 00 of the valve, the separation-based
OE version reduced ASD performance. Table 2 shows a signifi-
cant difference in the separation performance of normal sounds
between ID-Sep and Type-Sep for the corresponding Machine-
ID, and a slight difference between the two SS models with high

separation performance for anomalous sounds. From the above,
it can be seen that if the difference in separation performance
between normal and anomalous sounds is not as expected, the
proposed ASD method will be negatively affected. Considering
the similarity between normal and anomalous sounds, it is nec-
essary to train the separation model so that anomalous sounds,
which are unknown domains, can hardly be separated. Com-
paring only the versions of the proposed method, the score of
After-ID-Sep was the highest in most cases. The separation
performance of anomalous sounds was deficient compared with
that of normal sounds because separation was executed using
a model specialized for a particular Machine-ID. The distortion
caused by separating anomalous sounds may improve ASD per-
formance because the anomaly degree is increased. In addition,
either After-ID-Sep or Separation-based OE achieved the high-
est score for every Machine-ID. Thus, the two versions of the
proposed method are complementary.

5. Conclusion
We proposed an ASD method using SS. We compared two
versions of the proposed method, one that uses deep-learning-
based SS as a pre-processing step for ASD and the other that
uses separation-based OE, as well as a baseline that does not
use SS. Experimental results indicate that the proposed method
performed better than the baseline for many Machine-IDs. In
particular, the version with After-ID-Sep improved ASD per-
formance for all Machine-IDs. We also found that the two ver-
sions are complementary, as the maximum score was achieved
in After-ID-Sep or separation-based OE for all Machine-IDs.
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