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Abstract
Recently, speaker-attributed automatic speech recognition (SA-
ASR) has attracted a wide attention, which aims at answer-
ing the question “who spoke what”. Different from modular
systems, end-to-end (E2E) SA-ASR minimizes the speaker-
dependent recognition errors directly and shows a promising
applicability. In this paper, we propose a context-aware SA-
ASR (CASA-ASR) model by enhancing the contextual model-
ing ability of E2E SA-ASR. Specifically, in CASA-ASR, a con-
textual text encoder is involved to aggregate the semantic infor-
mation of the whole utterance, and a context-dependent scorer
is employed to model the speaker discriminability by contrast-
ing with speakers in the context. In addition, a two-pass decod-
ing strategy is further proposed to fully leverage the contextual
modeling ability resulting in a better recognition performance.
Experimental results on AliMeeting corpus show that the pro-
posed CASA-ASR model outperforms the original E2E SA-
ASR system with a relative improvement of 11.76% in terms
of speaker-dependent character error rate.
Index Terms: Rich transcription, speaker-attributed, multi-
talker ASR, Alimeeting

1. Introduction
Multi-talker modeling in meeting scenarios, also known as the
cocktail party problem, is one of the most challenging tasks in
the field of speech signal processing [1, 2]. The purpose of
speaker-attributed automatic speech recognition (SA-ASR) is
not only to obtain a multi-talker transcription [3, 4, 5, 6, 7],
but also to predict the speaker for each character or word in the
utterance, that is, to solve the problem of “who spoke what”.

To obtain the multi-talker transcriptions, serialized output
training (SOT) [7] can be used to implement multi-talker ASR,
which simply concatenates the transcriptions of different speak-
ers through a special symbol ⟨sc⟩, usually in the order of the
starting time of the utterance, known as first-in first-out. Com-
pared with permutation invariant training (PIT) [3, 4, 5], where
multi-talker transcriptions are obtained through multiple de-
coders in the model, SOT avoids the limit of the maximum num-
ber of speakers and duplicated hypotheses, resulting in a better
performance in multi-talker ASR tasks.

In literature, modular [8, 9] and end-to-end (E2E) [10, 11,
12, 13] approaches for SA-ASR have been proposed. There
are three kinds of modular approaches, including frame-level
diarization with SOT (FD-SOT), word-level diarization with
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SOT (WD-SOT) and target-speaker separation and ASR (TS-
ASR). In FD-SOT, the results of frame-level speaker diariza-
tion and the hypotheses of SOT-based ASR are aligned to ob-
tain speaker-attributed transcriptions. In WD-SOT, speaker-
attributed transcriptions are obtained by word-level speaker di-
arization on the hypotheses of SOT-based ASR. TS-ASR was
proposed to train the joint model of target speaker separa-
tion and ASR, which achieves the best SA-ASR performance
among the above three kinds of modular approaches. In con-
trast to modular approaches that do not directly optimize the
speaker-dependent objective, E2E SA-ASR approaches [10, 11,
12, 13] mainly consists of four modules: ASR encoder (ASR-
Enc), ASR decoder (ASR-Dec), speaker encoder (Spk-Enc) and
speaker decoder (Spk-Dec). The ASR-Enc and Spk-Enc obtain
the speech representations for multi-talker ASR and speaker
identification, respectively. The Spk-Dec mainly takes the to-
ken sequence and the representation obtained by Spk-Enc as in-
put and outputs the speaker representation for each token. The
posterior probability of each speaker for each token is obtained
by cosine similarity scoring between the output of Spk-Dec and
speaker profiles. The speaker profile weighted by the posterior
probability is fed to the ASR-Dec to help resolve multi-talker
ASR transcriptions.

Although the E2E SA-ASR paradigm shows a promising
applicability in multi-talker scenarios, the contextual informa-
tion (that might be beneficial for understanding the acoustic
scene of “who spoke what”) was not sufficiently taken into ac-
count in existing E2E approaches. This can be interpreted from
two aspects. For instance, in [13] the Spk-Dec takes the token
sequence as the query for source-target attention and the speech
representation as the key and value to generate the speaker rep-
resentation for each token. The problem lies in that the raw to-
ken sequence lacks context information, which may cause an in-
accurate attention range of each speaker and a non-informative
speaker representation. Besides, the involved cosine similarity
is a kind of context-independent scorer (CI-Scorer) when calcu-
lating the posterior probability of each speaker for each token,
which is another source of context insufficiency and also lacks
nonlinear modeling ability.

In this work, we therefore propose a context-aware speaker-
attributed ASR (CASA-ASR) to enhance the context modeling
ability accordingly. We first introduce a contextual text en-
coder (Context-Enc) to aggregate the semantic information of
the whole utterance to obtain a higher quality speaker represen-
tation. Then, a context-dependent scorer (CD-Scorer) is em-
ployed to model the local speaker discriminability by contrast-
ing with speakers in the context. In addition, we introduce a
two-pass decoding to enable Context-Enc and CD-Scorer to ob-
tain more complete context information for better speaker iden-
tification performance. Finally, a skip connection is introduced
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Figure 1: The overall structure of CASA-ASR.

between the raw speaker representation and the output of Spk-
Dec to make the speaker information easier to flow into deep
representations. Experimental results in the monaural setting
of the Alimeeting corpus [14, 15] show the superiority of the
proposed CASA-ASR method.

2. Context-aware Speaker-attributed ASR
2.1. SOT-based E2E SA-ASR
In the framework of SOT, the transcriptions of multiple speak-
ers are connected by a special “speaker change” symbol ⟨sc⟩
according to the emission time. Let the acoustic features be
denoted by X ∈ Rfa×la and the set of speaker profiles by
D = {dk ∈ Rfd |k = 1, ...,K}, where fa and la are the
dimension and length of X , respectively, K is the total number
of speakers in the profile, dk is the profile of the k-th speaker,
and fd is the dimension of a profile. The goal of E2E SA-
ASR is to estimate the SOT-style transcription Y = (yn ∈
{1, ...|V|} |n = 1, ..., N) and the corresponding speaker of
each token S = (sn ∈ {1, ...,K} |n = 1, ..., N) with the in-
puts of X and D, where |V| is the size of vocabulary V contain-
ing the ⟨sc⟩ symbol, yn and sn are the word index and speaker
index for the n-th token, respectively.

2.2. CASA-ASR
To obtain speaker-attributed transcriptions, E2E SA-ASR
mainly includes ASR branch and speaker branch. The proposed
CASA-ASR is obtained by enhancing the context-aware mod-
eling ability of E2E SA-ASR. The overall structure is shown in
Figure 1.

2.2.1. ASR encoder and speaker encoder
We use Conformer [16] as ASR encoder (ASR-Enc). Given the
acoustic input X , the output of ASR-Enc is denoted as Hasr ∈
Rfh×lh , where fh and lh are the embedding dimension and
the length of the sequence, respectively. We use Res2Net [17]
as speaker encoder (Spk-Enc) to transform acoustic features X
into speaker embedding H spk ∈ Rfh×lh .

2.2.2. ASR decoder
The speaker-aware transformer decoder is employed to predict
the multi-talker transcriptions, where the weighted speaker pro-

file d̄n ∈ Rfd

obtained from the weighted summation of D is
added into its first layer and fd represents the dimension of
the speaker profile. The calculation procedure of ASR decoder
(ASR-Dec) can be summarized as follows:

zasr
[1:n−1],1 = PosEnc(Embed(y[1:n−1])), (1)

z̄asr
n−1,l = zasr

n−1,l

+ MHAasr-self
l (zasr

n−1,l, z
asr
[1:n−1],l, z

asr
[1:n−1],l), (2)

¯̄zasr
n−1,l = z̄asr

n−1,l + MHAasr-src
l (z̄asr

n−1,l, H
asr, Hasr), (3)

zasr
n−1,l+1 =

{
¯̄zasr
n−1,l + FFasr

l (¯̄zasr
n−1,l +W spk · d̄n) (l = 1)

¯̄zasr
n−1,l + FFasr

l (¯̄zasr
n−1,l) (l > 1)

(4)

on = Softmax(W o · zasr
n−1,Lasr + bo). (5)

The token sequence is first processed to obtain zasr
[1:n−1],1 ∈

Rfd×n−1 by embedding and positional encoding. For each
layer l in ASR-Dec, the MHA operation and the source-target-
(src-) attention operation are applied at zasr

n−1,l to obtain ¯̄zasr
n−1,l.

Then, the position-wise feed forward layer is applied to obtain
the input of the next layer zasr

n−1,l+1. When l = 1, d̄n is pro-
jected through a linear transformation by multiplying with W spk

∈ Rfh×fd

. Then, it is added with ¯̄zasr
n−1,l and sent to the feed-

forward layer. Finally, the outputs of the last decoder layer is
passed through a linear transformation and softmax activation
function to obtain on. The posterior probability of token i (i.e.,
the i-th token in V) at the n-th decoder step is represented as

Pr(yn = i|y[1:n−1], s[1:n], X,D) = on,i, (6)

where on,i represents the i-th element of on.

2.2.3. Context-aware speaker decoder
Considering that the semantic information of z̄asr

[1:n−1],1 is rela-
tively weak, in order to obtain a better context-aware speaker
representation, we apply a contextual text encoder (Context-
Enc) to z̄asr

[1:n−1],1 to obtain z̄context
[1:n−1]. The first layer of Spk-Dec

with Context-Enc can be represented as follows:

z̄context
n−1 = Context-Enc(z̄asr

[1:n−1],1), (7)

¯̄zspk
n−1,1 = MHAspk-src

n−1,1(z̄
context
n−1 , Hasr, H spk), (8)

zspk
n−1,2 = ¯̄zspk

n−1,1 + FFspk
1 (¯̄zspk

n−1,1). (9)

The Context-Enc consists of several layers of transformer en-
coder containing self-attention and feed forward layers. By
treating z̄context

n−1 as the query, Hasr as the key and H spk as the
value, a context-dependent speaker representation ¯̄zspk

n−1,1 are
obtained for each token through the src-attention. Since z̄context

[1:n−1]

contains rich contextual information, it can aggregate more
speaker embeddings H spk by interacting with Hasr, which leads
to a higher-quality speaker representation for each token. We
employ a standard transformer-based decoder consisting of self-
attention, source-attention and point-wise feed forward layers
as the remaining layer of Spk-Dec to predict the speaker repre-
sentation for each token, which is computed as:

z̄spk
n−1,l = zspk

n−1,l

+ MHAspk-self
l (zspk

n−1,l, z
spk
[1:n−1],l, z

spk
[1:n−1],l), (10)

¯̄zspk
n−1,l = z̄spk

n−1,l + MHAspk-src
l (z̄spk

n−1,l, H
spk, H spk), (11)

zspk
n−1,l+1 = ¯̄zspk

n−1,l + FFspk
l (¯̄zspk

n−1,l), (12)

qn = W q · (zspk
n−1,Lspk + ¯̄zspk

n−1,1). (13)
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Since the Spk-Enc is pre-trained, the initial speaker representa-
tion from the first layer of Spk-Dec is also meaningful. There-
fore, we add a skip connection from the first layer to the output
layer to make the speaker information easier to flow into deep
representations, i.e., the speaker representation for each token
¯̄zspk
n−1,1 is added to the Lspk-th layer output. Finally, the output
qn is obtained by linear transformation.

2.2.4. CI-CD Scorer
In E2E SA-ASR [13], the output of Spk-Dec qn and the k-th
speaker vector dk are computed by cosine similarity to obtain
the weight βn,k of k-th speaker for n-th token. However, the
cosine similarity is a context-independent scorer (CI-Scorer),
which lacks context information and nonlinear modeling abil-
ity. Inspired by [18], we employ an extra context-dependent
scorer (CD-Scorer) to enhance the context-aware and nonlinear
modeling ability, resulting in the proposed CI-CD Scorer:

scoreCI
n,k = cos(qn, dk), (14)

scoreCD
n,k = tanh(CD-Scorer(q[1:n], dk)), (15)

βn,k =
exp(scoreCI

n,k + scoreCD
n,k)∑K

j exp(scoreCI
n,j + scoreCD

n,j)
, (16)

d̄n =
K∑

k=1

βn,kdk. (17)

where cos means the cosine similarity. The concatenation
of q[1:n] ∈ Rfd×n with dk ∈ Rfd

is used as the input of
CD-Scorer, which consists of several transformer encoder lay-
ers. The output of CD-Scorer is passed through a tanh func-
tion to obtain scoreCD

n,k, which matches the range of [-1, 1] as
scoreCI

n,k. Then, scoreCI
n,k and scoreCD

n,k are added and normal-
ized over K speakers to get βn,k ∈ R as in (16). Finally, d̄n
is obtained by the weighted sum of dk and βn,k. The posterior
probability of person k speaking the n-th token is given by

βn,k = Pr(sn = k|y[1:n−1], s[1:n−1], X,D). (18)

The entire model is trained as a joint task using the loss func-
tion:

Lossjoint = λLossspk(ŝ, s) + (1− λ)Lossasr(ŷ, y) (19)

where s and y are the true speaker and transcription, and ŝ
and ŷ are the corresponding hypothesises, respectively. The
cross-entropy function is used as the speaker loss while joint
attention-CTC loss [19, 20] is used to train the ASR model.

2.2.5. Two-Pass Decoding
Context-Enc and CD-Scorer need the whole sequence to
achieve a better context modeling. However, at each step of de-
coding, the input of the Context-Enc and CD-Scorer is the par-
tial sequence obtained from the previous steps, i.e., z̄asr

[1:n−1],1,
q[1:n]), which leads to insufficient global context information.
Therefore, after the best hypothesis of ASR y[1:N ] is obtained
in the first-pass decoding, we take y[1:N ] as the input for the
second-pass decoding, which is only used to predict speakers.
In the second-pass decoding, the input of Context-Enc and CD-
Scorer has global context, i.e., z̄asr

[1:N ],1, q[1:N ]), which can make
the speaker identification more accurate. Note that as in the
second-pass decoding the input of Context-Enc and CD-Scorer
is complete, the speaker prediction can therefore be obtained in
one feed-forward without any auto-regression. With the two-
pass decoding, the posterior probability of person k speaking
the n-th token is thus given by:

βtwo-pass
n,k = Pr(s

two-pass
n = k|y[1:N ], s[1:N ], X,D). (20)

3. Experiments
3.1. Dataset and evaluation metrics
In this work, Alimeeting corpus is used to evaluate the per-
formance, which is an open source Mandarin corpus of meet-
ing scenario. This dataset contains 104.75 hours for training
(Train), 4 hours for evaluation (Eval) and 10 hours for test
(Test). Among them, the Train and Eval sets contain not only
the 8-channel far-field audios recorded by a microphone array
(Ali-far), but also the single-channel near-field audios recorded
by the headset microphone of the participants (Ali-near), while
the Test set only contains the far-field audios. Because a monau-
ral setup is used for training and evaluation in this work, we ap-
ply CDDMA beamforming [21, 22] to Ali-far to obtain a single-
channel data set Ali-far-bf. The prefixes Train-, Eval- and Test-
stand for different sets. For the speaker profile, we use a 256-
dim d-vector (i.e., fd = 256) which is extracted by Res2Net
pre-trained on CN-Celeb corpus [23]. Since there are at most
four participants in each scenario, in case of meetings with less
participants, the profiles are padded with speakers from other
meetings.

We use speaker independent- (SI-) and speaker dependent-
(SD-) character error rate (CER) [24] as evaluation metrics. SI-
CER is used to evaluate the multi-talker ASR task in the SOT
framework, which is computed in the same way as the normal
CER, ignoring the speaker labels. While SD-CER is calculated
by matching the ASR hypothesis to the corresponding speaker
reference transcription, which is a rigorous evaluation metric
used to evaluate SA-ASR in meeting scenarios.

3.2. Model configuration
The ASR-Enc contains 12 layers of conformer with 4-head
multi-head attention (MHA) and convolutional kernel size of
15, where the dimensions of MHA and feed-forward network
(FFN) are set to be 256 (i.e., fh = 256) and 2048, respectively.
The ASR-Dec contains 6 layers of transformer decoder. The
Spk-Enc has the same architecture as the d-vector extractor ex-
cept that an additional linear layer is added to map the fd-dim
output into fh-dim embedding. Spk-Enc is initialized with the
pretrained d-vector extractor. The Spk-Dec has 3 layers, i.e.,
Lspk = 3. Both Context-Enc and CD-Scorer consist of 4 trans-
former encoder layers with 4-head MHA. The settings of MHA
and FFN modules are similar to ASR-Enc. The weight of the
additional CTC loss in [20] is set to be 0.3.

3.3. Training details
In this work, we use the 80-dimensional log Mel filterbank
(Fbank) as the input feature. The window size is 32 ms and
the window shift is 8 ms. The vocabulary used for ASR con-
sists of 4950 common Chinese characters (|V| = 4950). We use
the ESPnet toolkit [25] to train the models.

First, we train a SOT-based multi-talker ASR model un-
der the above configurations using Train-Ali-far-bf and Train-
Ali-near. Then, we use the pre-trained parameters of the ASR
model and d-vector extractor to initialize ASR-Enc, ASR-Dec,
and Spk-Enc. Finally, we jointly fine-tune the model using
Train-Ali-far-bf and Train-Ali-near, where the weight λ for
speaker loss is set to 0.5. The total amount of data used in the
experiment is consistent with that in [8] to ensure fair compari-
son. We used the Adam [26] optimizer to jointly train the model
for 60 epochs with a warmup for 2000 steps, and the maximum
learning rate is set to 5e-4. The speaker with the highest av-
eraged βn,k of tokens between two ⟨sc⟩ is selected as the pre-
dicted speaker of that utterance.
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Table 2: Ablation study on different modules of the proposed CASA-ASR in terms of SI-CER (%) and SD-CER (%).

Approach Parameters SI-CER SD-CER
Eval Test Average Eval Test Average

E2E SA-ASR 60.07 M 26.4 28.1 27.6 31.8 34.7 34.0
+ skip connection 60.07 M 26.5 28.1 27.7 30.4 34.7 33.6

+ CD-Scorer 65.46 M 26.5 28.1 27.7 29.7 32.5 31.8
+ two-pass decoding 65.46 M 26.5 28.1 27.7 28.7 31.4 30.7

+ Context-Enc (CASA-ASR) 70.79 M 26.3 28.0 27.6 27.9 30.8 30.0

Table 3: Comparison of recognition performance on different data settings in terms of SI-CER (%) and SD-CER (%).

Data Selection Duration SI-CER SD-CER
Eval Test Average Eval Test Average

Train-Ali-far-bf 105 Hours 27.1 28.6 28.2 29.9 32.2 31.6
+ Train-Ali-near 210 Hours 26.4 28.2 27.7 29.0 32.2 31.4

+ interference for Train-Ali-near 210 Hours 26.4 28.2 27.8 28.5 30.8 30.2
+ interference for Train-Ali-far-bf 210 Hours 26.3 28.0 27.6 27.9 30.8 30.0

Table 1: Comparison of various approaches on AliMeeting sets
in terms of SD-CER (%).

Approach SD-CER
Eval Test Average

FD-SOT [8] 41.0 41.2 41.2
WD-SOT [8] 36.0 37.1 36.8
TS-ASR [8] 32.5 35.1 34.4

E2E SA-ASR [13] 31.8 34.7 34.0
CASA-ASR (ours) 27.9 30.8 30.0
∗: This models is re-implemented by ourselves.

3.4. Experimental Results

3.4.1. Comparison of various SA-ASR approaches
Table 1 shows the comparison of the proposed CASA-ASR,
three modular approaches (i.e., FD-SOT, WD-SOT, TS-ASR)
and the E2E SA-ASR. As expected, the E2E SA-ASR slightly
outperforms the best modular approach, TS-ASR, in terms of
the average SD-CER on Eval and Test sets (from 34.4% to
34.0%). The proposed method CASA-ASR achieves 11.8%
(from 34.0% to 30.0%) relative SD-CER reduction compared
to E2E SA-ASR.

3.4.2. The ablation study of CASA-ASR
We show the ablation study on different modules of the pro-
posed CASA-ASR in Tabel 2. Skip connection is applied to
assist speaker information flow into deep representations, lead-
ing to a slight SD-CER reduction (from 34.0% to 33.6%) on
Eval and Test sets. Involving the CD-Scorer leads to a large
relative SD-CER reduction (from 33.6% to 31.8%), which indi-
cates that CD-Scorer can improve the performance of SA-ASR
by contrasting with other speakers in the context. Due to the
properties of autogressive decoding, the context of each step is
incomplete when decoding. The two-pass decoding is involved
to solve this problem, which further reduces the average SD-
CER (from 31.8% to 30.7%). The Context-Enc is involved to
obtain the final CASA-ASR, which achieves the best perfor-
mance in terms of both SD-CER (30.0%) and SI-CER (27.6%).
As shown in Fig. 2, by involving the Context-Enc, the tokens
(query for src-attention) between two speaker change symbols
⟨sc⟩ have a more focused attention weights for the speech repre-
sentation. This indicates that the Context-Enc can aggregate the
context information of the whole sentence to obtain a higher-
quality speaker representation through source-target attention.

Figure 2: Visualization of source-target attention with and with-
out Context-Enc.

3.4.3. Comparison of performance on different data settings
We also investigate the SA-ASR performance under different
data selection and the results are shown in Tabel 3. In case of
only training with Train-Ali-far-bf, we achieve an average SI-
CER of 28.2% and SD-CER of 31.6% on Eval and Test sets.
Simply adding Train-Ali-near to the training set can improve
the performance in terms of SI-CER (from 28.2% to 27.7%).
However, it can not take a substantial improvement for SD-
CER because there is only one speaker in each audio in Train-
Ali-near. After adding interference speakers to Train-Ali-near,
the average SD-CER is significantly reduced (from 31.4% to
30.2%). Additionally adding the interference speaker to the
Train-Ali-far-bf achieves the lowest SD-CER (30.0%).

4. Conclusion
In this paper, we proposed a context-aware speaker-attributed
ASR model by enhancing the contextual modeling capability
of E2E speaker-attributed ASR. It was shown that adding skip
connection can make the speaker information easier to flow into
deep representations. Then Context-Enc enhances the context-
aware modeling and obtains a higher-quality speaker represen-
tation for each token. With the CD-Scorer, stronger context
awareness and nonlinear modeling ability are involved into the
model. The proposed two-pass decoding strategy makes the
context of Context-Enc and CD-Scorer more complete, which
further improves performance. The proposed CASA-ASR ap-
proach achieves the best performance on the open-source Al-
imeeting corpus.
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