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Abstract
This study explores the impact of using non-native speech

data in acoustic model training for pronunciation assessment
systems. The goal is to determine how introducing non-native
data in acoustic model training can influence alignment accu-
racy and assessment performance. Acoustic models are trained
using different combinations of native and non-native speech
data, and the Goodness of Pronunciation (GOP) metric is used
to evaluate performance. Results show that models trained
with manually labeled non-native data yield the highest assess-
ment performance and alignment accuracy. Models trained with
mixed non-native and native data perform best when consider-
ing the GOP distribution on both non-native and native speech.
Additionally, models trained with native data are more robust
to alignment variations. These findings highlight the impor-
tance of carefully selecting and incorporating non-native data in
acoustic model training for pronunciation assessment systems.
Index Terms: pronunciation assessment, non-native speech,
second language acquisition, acoustic model

1. Introduction
With the advancement of automatic speech recognition (ASR)
technology, there has been a growing interest in developing
pronunciation assessment which is an essential component in
Computer-Aided Pronunciation Training (CAPT). The funda-
mental idea of non-native speech assessment has been measur-
ing the deviation of learners’ production from that of native
speakers thus earlier studies have been using acoustic models
trained using native data of the target language [1, 2, 3] to eval-
uate learners’ pronunciation quality. The Goodness of Pronun-
ciation (GOP) metric is widely used for phone-level pronunci-
ation assessment. First proposed in [1], GOP is defined as the
duration-normalized posterior probability of a reference phone
given the corresponding acoustic segment. Since its introduc-
tion, various studies have extended GOP by improving acoustic
models and refining calculation methods [2, 3, 4].

It has long been acknowledged that there are phonetic dif-
ferences between native and non-native speech [5, 6, 7]. In-
corporating non-native speech in acoustic model training has
been shown to benefit automatic speech recognition (ASR) per-
formance and mispronunciation detection accuracy on L2 data
[8, 9, 10, 11, 12]. Recently, studies on automated pronunciation
assessment have also started to incorporate non-native data in
acoustic model training [13, 14, 15, 16]. It is important to note
that there is a fundamental difference in the purpose of incor-
porating non-native speech in non-native ASR and non-native
assessment or mispronunciation error detection. In the former
case, the system aims to be either as adaptive as possible with
the nonnative data or as invariant to accent variations as possi-

ble to achieve the best ASR accuracy. In contrast, in the latter
case, there is a trade-off between higher recognition accuracy on
non-native speech and objective assessment of non-native pro-
duction. [13] and [14] trained acoustic models on a mix of 960-
hour LibriSpeech corpus and 1,000-hour non-native speech by
L1 Mandarin teenage learners. [15] mentioned about incorpo-
rating two sets of L2 data, one being 1,696 hours and the other
being 6,591 hours, for different conditions of acoustic model
training. Finally, [16] mentioned two non-native datasets, one
being 10 hours and the other 4,000 hours, for different con-
ditions of acoustic model training. However, the contribution
of non-native speech to the improvement of pronunciation as-
sessment systems has not been clearly addressed, except for the
postulate that it could result in better alignment results, which
in turn helps to yield more accurate assessment results [2].

In this paper, we aim to fill this gap by investigating the con-
tribution of non-native speech in pronunciation assessment from
two different perspectives: alignment accuracy and assessment
performance. Specifically, we examine how the proportion of
non-native data in the acoustic model training affects the align-
ment accuracy of non-native speech and how it subsequently
impacts the performance of the pronunciation assessment sys-
tem. Additionally, we investigate the influence of transcrip-
tions used by comparing the performance of systems trained
with human-annotated phone sequences and those trained with
reference phone sequences. We also address the low-resource
condition and investigate the optimal way to utilize non-native
data in automated pronunciation assessment when only a lim-
ited amount of non-native data (10 hours) is available. Given
that the acoustic models in this work will be based on Deep
Neural Networks (DNNs), we adopt GOP as defined in [2].

2. Methodology
2.1. Dataset

Four datasets are used in this study, two open-sourced ones,
LibriSpeech [17] and SpeechOcean762 [18], and two in-house
datasets, L2-InHouse-Phone and L2-InHouse-Align. Lib-
riSpeech consists of around 1000 hours of read speech based on
public domain audiobooks. The training set (around 960 hours)
and clean data from the dev and test sets (around 5.4 hours each)
are used. Speechocean762 is a corpus designed for pronuncia-
tion assessment which includes a total of 5,000 read English
utterances from 250 L1 Mandarin learners, half of which are
children and the other half are adults. For pronunciation accu-
racy, each utterance is rated by five experts at three different
levels, i.e., phone-level with a range of 0 to 1, word-level and
utterance-level with a range of 1 to 10. For all three levels, a
higher rating indicates better pronunciation and vice versa. Fol-
lowing the convention provided by the corpus, final scores at
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phone-level are set as the average of all five experts and final
scores at the other two levels are the median values of all five
experts. The L2-InHouse-Phone dataset is an internal dataset
collected at the authors’ institution which includes around 1,450
hours (around 700,000 utterances) of read English speech by
adult L1 Mandarin learners. The phone sequence of each utter-
ance is manually annotated by linguistic experts (with advanced
degrees in linguistics) after collection. The L2-InHouse-Align
dataset is also an internal dataset which contains around 4 hours
(3,300 utterances) of read English speech by adult L1 Mandarin
learners. The segmentation boundaries of each phone are man-
ually checked by linguistic experts (with advanced degrees in
linguistics) using Praat [19]. The LibriSpeech (train, dev-clean)
dataset and the L2-InHouse-Phone dataset are used for acoustic
model training. The SpeechOcean762 dataset and LibriSpeech
(test-clean) dataset are used for pronunciation assessment and
the L2-InHouse-Align dataset is used for alignment accuracy
evaluation.

2.2. Acoustic models

Triphone Gaussian Mixture Model and Hidden Markov
Model (GMM-HMM) is trained using Kaldi [20] and forced-
alignement is applied to obtain the frame-level senone (tied tri-
phone states) labels of the acoustic data used for further acous-
tic model training. The input features for the GMM-HMM
training are 13-dimension Mel-frequency cepstral coefficients
(MFCCs), the change in coefficients, the change in delta val-
ues and pitch, which adds up to 40-dimension inputs. The deep
feedforward sequential memory network and Hidden Markov
Models (HMM), i.e., DFSMN-HMM, is adopted as the archi-
tecture of acoustic model training for alignment and assess-
ment [21]. The DFSMN architecture consists of 2 convolution
layers and 24 FSMN layers followed by two fully connected
(FC) layers, a feedforward layer and a bottleneck layer. The
number of units by the softmax output layers are determined
by the senone labels derived from forced-alignment with cor-
responding GMM-HMM systems. The input features are 39-
dimension Mel-frequency cepstral coefficients (MFCCs).

The DFSMN-HMM acoustic models are used in two ways:
(1) to force-align the speech to get phone-level time stamps, and
(2) to calculate Goodness of Pronunciation (GOP) scores for
pronunciation assessment. In the forced-alignment procedure,
posteriors from the DFSMN-HMM and state transition proba-
bility of the corresponding GMM-HMM are used to get the time
stamps for the reference phones. The GOP score [2] for a phone
p is calculated as follows:

GOP (p) = LPP(p)−maxq∈QLPP(q) (1)

where p is the phone in consideration and Q is the whole phone
set. LPP(p) is the log phone posterior and is computed as
logp(p|o; ts, te), where ts and te are the start and end frame
indexes of phone p, and o are the corresponding acoustic obser-
vations. It is then further normalized to be in range of 0 to 1, for
convenience of further analysis.

GOPnorm =
GOP (p)−min(GOP )

max(GOP )−GOP (p)
(2)

3. Experiments and Results
3.1. Experimental settings

Two GMM-HMMs are trained to get the frame-level senone la-
bels for the acoustic data and Table 1 shows the experimental

settings for each of them. The 960 hours of L1 English are the
train set from LibriSpeech and the 1,430 hours of L2 English
are from the L2-InHouse-Phone dataset. Phone-labeling (PL)
indicates whether the transcriptions used for the L2 dataset are
based on human-annotated phone sequences (‘YES’) or refer-
ence forms from the CMU dictionary (‘NO’) [22].

Table 1: Experimental settings for the GMM-HMM training.
L1 and L2 indicate native English data and non-native English
data, respectively. PL represents phone labeling conditions.

Data PLL1 L2
GMM-HMM 1 960h 1,430h YES
GMM-HMM 2 960h 1,430h NO

Table 2 shows various ways of data combinations for the
DFSMN acoustic model training. The first five model condi-
tions, from DFSMN 1 to DFSMN 5 aim to investigate how dif-
ferent ways of mixing native and nonnative English data could
influence the alignment and assessment on nonnative speech
hence the overall size of the training data are kept as the same,
i.e., 960 hours, for fair comparisons among the five conditions.
Models DFSMN 6 and DFSMN 7 are trained to examine the
low-resource condition when only limited nonnative data are
available. Models DFSMN 8 and DFSMN 9 are trained with
the maximum number of training data available for this study
with the expectation that this will lead to the highest perfor-
mance.

Table 2: Experimental settings for the DFSMN training. The
Column Initial-Align shows the GMM-HMM used for the initial
alignment results.

L1 L2 Initial-AlignDuration PL
DFSMN 1 960h 0h - GMM-HMM 1
DFSMN 2 0h 960h YES GMM-HMM 1
DFSMN 3 0h 960h NO GMM-HMM 2
DFSMN 4 480h 480h YES GMM-HMM 1
DFSMN 5 480h 480h NO GMM-HMM 2
DFSMN 6 960h 10h YES GMM-HMM 1
DFSMN 7 960h 10h NO GMM-HMM 2
DFSMN 8 960h 1,430h YES GMM-HMM 1
DFSMN 9 960h 1,430h NO GMM-HMM 2

The selection of the checkpoint for each of the DFSMN
models under each condition is based on a common develop-
ment set which includes the LibriSpeech dev-clean data (around
5 hours) and around 20 hours of L2 data from the L2-InHouse-
Phone dataset. The highest frame-level accuracy of senone la-
bels for each of the DFSMN models on the common develop-
ment set are given in Table 3.

As shown in Table 3, the DFSMN 5 model, trained on a
combination of 480 hours of LibriSpeech data and 480 hours
of L2-InHouse-Phone data with reference phone transcriptions,
exhibits the highest performance among the first seven models,
DFSMN 1 to DFSMN 7. The results show that models trained
on a mixture of native and nonnative English data demonstrate
greater accuracy than models trained on either dataset in iso-
lation. Furthermore, models trained exclusively on nonnative
data exhibit higher accuracy than those trained solely on na-
tive data, which is expected as the development set comprises
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Table 3: The highest frame-level classification accuracy of
senones for each of the DFSMN models.

Model # of senones Accuracy
DFSMN 1 5,712 0.581
DFSMN 2 5,712 0.616
DFSMN 3 5,664 0.632
DFSMN 4 5,712 0.695
DFSMN 5 5,664 0.717
DFSMN 6 5,712 0.635
DFSMN 7 5,664 0.639
DFSMN 8 5712 0.732
DFSMN 9 5664 0.757

both native and nonnative data, and there is a greater proportion
of nonnative data in the corpus. Notably, the use of reference
transcriptions, rather than human-annotated phone sequences,
in the training data enhances the accuracy of models trained on
nonnative data. This phenomenon may be attributed to the fact
that learners from the same L1 background often share similar
pronunciation error patterns, which in turn yields more stable
acoustic distributions of sounds, despite deviating from native
English production.

3.2. Alignment accuracy

To evaluate the accuracy of alignment, we used the L2-InHouse-
Align dataset and measured the absolute differences between
the force-aligned results and the human-annotated results. The
average phone length in the L2-InHouse-Align dataset, as an-
notated by humans, was 114 ms. The metric used for evalua-
tion was based on the absolute difference of time stamps at the
phone-level. We analyzed the distribution of absolute differ-
ences at three levels, namely less than 25ms, 50ms, and 100ms,
and report the percentage of phones falling in each range in Ta-
ble 4. This evaluation approach will help us compare the per-
formance of different models and determine their effectiveness
in accurately aligning phone sequences.

Table 4: Alignment accuracy by the DFSMN-HMM models on
the L2-InHouse-Align dataset.

Model <25ms <50ms <100ms
DFSMN 1 0.327 0.61 0.829
DFSMN 2 0.376 0.684 0.911
DFSMN 3 0.351 0.642 0.878
DFSMN 4 0.373 0.682 0.910
DFSMN 5 0.355 0.647 0.885
DFSMN 6 0.351 0.651 0.884
DFSMN 7 0.356 0.644 0.877
DFSMN 8 0.379 0.685 0.912
DFSMN 9 0.352 0.642 0.877

Table 4 reveals that, among the first seven models from DF-
SMN 1 to DFSMN 7, the DFSMN 2 model, which is trained
exclusively on 960 hours of nonnative data, attains the high-
est alignment accuracy across all three levels. The DFSMN 4
model, trained on a mixture of 480 hours of native data and 480
hours of non-native data, achieves slightly lower but compara-
ble results to DFSMN 2. Notably, using native data exclusively,
as done in DFSMN 1, results in the least alignment accuracy.
In contrast to the frame-level classification accuracy presented

in Table 3, where using reference phone sequences outper-
forms the human-annotated phone sequences when other fac-
tors are constant, the alignment results demonstrate that utiliz-
ing human-annotated phone sequences of nonnative data leads
to better alignment accuracy than using reference phone se-
quences. Using human-annotated phone sequences of L2 data
can result in more accurate alignment, indicating that acous-
tic models trained on L2 data with such annotations are better
equipped to capture the nuances of L2 speech. In low-resource
conditions, the results indicate that incorporating just 10 hours
of nonnative data with either human-annotated phone sequences
or reference phone sequences into acoustic model training can
significantly improve alignment accuracy compared to using
only native data. Furthermore, the results obtained with this
approach are comparable to those obtained when all or half of
the training data are nonnative data with reference phone se-
quences.

3.3. Pronunciation assessment performance

We evaluate the performance of pronunciation assessment on
the SpeechOcean762 dataset. Since the training data for the
acoustic models only consist of speech by adult learners, we
partition the SpeechOcean762 dataset into two subsets: one ex-
clusively including speech by adult learners and the other solely
by children learners. The assessment results for both subsets,
as well as for the entire dataset, are presented in Table 5, en-
compassing the performance of nine models, from DFSMN 1
to DFSMN 9. Furthermore, we examine different combinations
of alignment and GOP calculation models to explore their im-
pact on the assessment performance, and the outcomes are also
presented in Table 5.

Table 5 presents the evaluation results of our models on the
SpeechOcean762 dataset. The Column Alignment and Column
GOP indicate the models used for forced-alignment and GOP
calculation, respectively. The three columns, Adult, Child, and
Both, represent results based solely on nonnative speech from
adult learners, child learners, and the entire dataset, respec-
tively. The evaluation results are reported in terms of Pearson
correlation coefficients (PCC) between the GOP scores and the
corresponding human-annotated scores at three levels: phone,
word, and sentence. The GOP scores for phones are calculated
using Equation 1 and then normalized based on Equation 2. For
words and sentences, the GOP scores are the average of the
scores of all phones within the corresponding word/sentence.
In general, using the DFSMN 2 model for both alignment and
GOP calculation gives the best result for assessment followed
by the DFSMN 4 model, which is consistent with the alignment
result in Table 4. When comparing the results between different
learner groups, the results on adult learners outperforms that on
the child learners consistently. This is not surprising since the
data used for acoustic model training are by solely adult learn-
ers. Table 5 includes results obtained by using the DFSMN 2
model for forced-alignment and the remaining models for GOP
calculation, which enables the disentangling of the effect of
alignment accuracy and GOP assessment. Overall, the tendency
remains similar to the results obtained when matching models
are used for both alignment and GOP calculation. A more accu-
rate but mismatching alignment model improves the pronunci-
ation assessment performance of the DFSMN 1 model (which
uses only native data for acoustic model training), and results in
a small degradation in performance for the acoustic models with
a mixture of native and non-native data where the proportion of
native data is dominant or human-annotated phone sequences
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Table 5: Pronunciation assessment result, in terms of Pearson correlation coefficients (PCC), on the SpeechOcean762 dataset at three
different levels, i.e., phone-level, word-level and sentence-level. The Column Alignment indicates models used for forced alignment and
the Column GOP indicates the models used for GOP calculation.

Alignment GOP Adult Child Both
Sentence Word Phone Sentence Word Phone Sentence Word Phone

DFSMN 1 DFSMN 1 0.624 0.397 0.407 0.441 0.284 0.319 0.543 0.360 0.373
DFSMN 2 DFSMN 2 0.670 0.530 0.559 0.484 0.397 0.424 0.585 0.489 0.512
DFSMN 3 DFSMN 3 0.581 0.430 0.455 0.438 0.302 0.324 0.514 0.39 0.409
DFSMN 4 DFSMN 4 0.664 0.488 0.515 0.491 0.362 0.407 0.587 0.452 0.477
DFSMN 5 DFSMN 5 0.628 0.440 0.459 0.462 0.329 0.356 0.545 0.407 0.422
DFSMN 6 DFSMN 6 0.637 0.445 0.456 0.468 0.337 0.371 0.563 0.413 0.425
DFSMN 7 DFSMN 7 0.645 0.458 0.46 0.456 0.347 0.369 0.556 0.425 0.427
DFSMN 8 DFSMN 8 0.682 0.511 0.537 0.524 0.408 0.443 0.601 0.478 0.502
DFSMN 9 DFSMN 9 0.617 0.443 0.461 0.470 0.336 0.355 0.536 0.408 0.420
DFSMN 2 DFSMN 1 0.625 0.410 0.414 0.433 0.322 0.329 0.534 0.382 0.382
DFSMN 2 DFSMN 3 0.541 0.411 0.430 0.422 0.332 0.334 0.477 0.386 0.395
DFSMN 2 DFSMN 4 0.656 0.488 0.507 0.462 0.366 0.384 0.568 0.452 0.465
DFSMN 2 DFSMN 5 0.589 0.435 0.443 0.417 0.318 0.329 0.505 0.399 0.403
DFSMN 2 DFSMN 6 0.625 0.438 0.448 0.437 0.350 0.357 0.537 0.411 0.416
DFSMN 2 DFSMN 7 0.610 0.438 0.445 0.431 0.349 0.354 0.527 0.412 0.413

are used for the non-native data. However, the performance of
the pronunciation assessment is more severely degraded for the
DFSMN 3 and DFSMN 5 when non-native data is used with
reference phone sequences. In general, the results suggest that
models trained with a greater proportion of native data are more
robust to alignment variations.

For the low-resource conditions, when comparing the
model performance of the DFSMN 1, DFSMN 6 and DF-
SMN 7 models, it shows that incorporating 10 hours of non-
natvie speech data leads to significant improvement in assess-
ment accuracy across all three levels. The difference between
the DFSMN 6 and DFSMN 7 models is negligible, suggesting
that the use of human-annotated phone sequences does not have
a substantial impact when native data dominates the acoustic
model training. In contrast, comparing DFSMN 2 vs. DF-
SMN 3, DFSMN 4 vs. DFSMN 5, and DFSMN 8 vs. DF-
SMN 9 highlights the importance of human-annotated phone
sequences when native data is less dominant in the training data.
Notably, the PCC values between the DFSMN 7 and DFSMN 9
models are comparable at phone and word levels, but the DF-
SMN 7 model outperforms the DFSMN 9 model at sentence
level, despite the DFSMN 9 model being trained on 1430 hours
of nonnative data compared to only 10 hours for the DFSMN 7
model. These findings underscore the value of carefully consid-
ering the balance of native and nonative data, as well as the role
of human-annotated phone sequences, in training effective pro-
nunciation assessment models under low-resource conditions.

Table 6: Pronunciation assessment result on the LibriSpeech
test-clean set at the phone level.

# Phones Model % GOP <1
190,765 DFSMN 1 0.038
190,622 DFSMN 2 0.216
190,411 DFSMN 3 0.240
190,736 DFSMN 4 0.045
190,486 DFSMN 5 0.240
190,744 DFSMN 6 0.038
190,532 DFSMN 7 0.038

Table 6 shows how the L2 pronunciation assessment mod-
els perform on the LibriSpeech test-clean dataset. The table
presents the number of phones and the percentage of phones
with a GOP value below 1, indicating incorrect pronunciation.
The results show that two factors are crucial for assessing L1
speech: the proportion of nonnative data in acoustic model
training and the use of human-annotated phone-labeling data.
Using only native data yields the best performance, with lit-
tle degradation seen from adding 10 hours of nonnative data.
The model’s performance is slightly worse when nonnative data
with human-annotated phone sequences accounts for half of the
training data. However, model performance significantly de-
grades when only nonnative data is used, and when half of the
data are L2 data with reference phone sequences.

4. Conclusion
This study aims to enhance our understanding of the influence
of non-native data on pronunciation assessment systems by ex-
amining alignment accuracy and assessment performance. It
also investigates the impact of the proportion of non-native
data in acoustic model training and the type of transcriptions
used, including human-annotated phone sequences and refer-
ence phone sequences. Results reveal that using non-native data
with human-annotated phone sequences during acoustic model
training leads to the highest accuracy in alignment and pro-
nunciation assessment of non-native speech. Mixing half na-
tive data and half non-native data with human-annotated phone
sequences in training can achieve slightly worse but compa-
rable results to the use of solely non-native data with human-
annotated phone sequences. Additionally, the mixing condition
performs better on the pronunciation assessment of native data.
In low-resource conditions, adding 10 hours of non-native data,
regardless of the type of transcriptions used, significantly im-
proves alignment accuracy and assessment performance com-
pared to using only native data for acoustic model training.
These findings suggest that incorporating non-native data in
acoustic model training can improve pronunciation assessment
systems and that the proportion of non-native data and the type
of transcriptions used are crucial factors to consider when de-
veloping such systems.
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