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Abstract

Understanding which information is encoded in deep
models of spoken and written language has been
the focus of much research in recent years, as it is
crucial for debugging and improving these architec-
tures. Most previous work has focused on probing
for speaker characteristics, acoustic and phonological
information in models of spoken language, and for
syntactic information in models of written language.
Here we focus on the encoding of syntax in several
self-supervised and visually grounded models of spo-
ken language. We employ two complementary prob-
ing methods, combined with baselines and reference
representations to quantify the degree to which syntac-
tic structure is encoded in the activations of the target
models. We show that syntax is captured most promi-
nently in the middle layers of the networks, and more
explicitly within models with more parameters.1

Index Terms: speech recognition, syntax, computa-
tional linguistics

1. Introduction
State-of-the-art models of (spoken) language rely on
deep learning architectures composed of various com-
ponents and based especially on the Transformer
model (e.g. [1, 2]). Evaluating the performance of
these models via standard quantitative protocols is
straightforward enough; but it is not always easy to
understand the reasons for fine-grained patterns of be-
havior and failure modes, and not trivial to debug and
iterate on design. One tool to aid in this process has
been the analysis and interpretation of the representa-
tions learned by the models, as encoded in the activa-
tion patterns within the various components [3, 4].

For text-based models, numerous works have
probed these activations for many types of informa-
tion, with a special interest in syntactic structure [5, 6,
7]. By contrast, the focus on speech models has been

1Code: https://github.com/techsword/
wave-to-syntax

on the encoding of acoustic information, speaker char-
acteristics, phonetics and phonology (e.g. [8, 9, 10]).

However, as the current crop of speech models
grows in size and sophistication, we ask whether they
also learn to encode syntactic structure to any appre-
ciable degree. If the knowledge of syntax is useful for
optimizing a model’s training objective, the expecta-
tion would be that, given enough data, the model will
learn to represent it. As a simple example, consider the
utterance The authors of the book are French: if the
timesteps in the feature space corresponding to are are
masked and the model needs to reconstruct them, then
it can do it better if it encodes number agreement be-
tween subject and verb. In the current study, we evalu-
ate the hypothesis that syntax information is in general
represented in such models.

We use two established representation probing
techniques [5, 7] in combination with carefully de-
signed baselines and reference representations to
quantify the encoding of syntactic structure in selected
current models of spoken language trained via self-
supervision objectives. We also apply our method-
ology to models trained via visual supervision (also
known as visual grounding) and to a model trained
via a combination of self- and visual supervision. We
track the encoding of syntactic structure throughout
the transformer layers of these target models.

Our findings show that syntax is captured by all
these models, with the following caveats and details:
Firstly, the encoding of syntax is generally weaker than
in text-based models (such as BERT [11]) . Secondly,
much of the syntactic structure that is captured may be
encoded in lexical rather than purely syntactic form.
Thirdly, self-supervised and combined objectives lead
to less syntactic encoding in the final model layers,
while the visually-supervised objective does not have
this effect. Finally, increased model size is associated
with the stronger encoding of syntactic information.

2. Related work
Within Natural Language Processing (NLP), there has
been substantial interest in understanding the represen-
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tations emerging within text-based language models:
surveys of such work include [3, 4, 12]. The pre-
dominant family of approaches relies on correlating
the activation patterns in trained models to linguistic
structures that are considered necessary for correctly
processing natural language. For written language,
these are often various types of word categories, con-
stituency structures or syntactic and semantic depen-
dencies, for example as proposed in [5, 6, 7].

For models of spoken language, most previous
work has focused on acoustic, phonetic and phone-
mic structures as well as on speaker characteristics,
which are the most plausible types of information a
speech model is expected to learn. Works analyz-
ing the encoding of phonemes in a variety of speech
models ranging from basic CNN-based ASR models
to current transformer-based self-supervised models
[8, 9, 13, 14, 15, 16] tend to find a salient encoding
of phonemes in some layers of the models analyzed.
In [10] the authors check for the encoding of acous-
tic, phonemic, lexical and semantic information in
the self-supervised wav2vec2 [1] using probes such as
canonical correlation analysis and mutual information,
finding an autoencoder-style behavior, where across
the layers the representations first diverge from low-
level input features and at the end approximate them
again. The reverse is the case for higher-level infor-
mation such as word identity and meaning. A few pa-
pers have focused on analyzing phonology and/or se-
mantics in visually-grounded models [17], for exam-
ple [18, 19], in general finding phonemes encoded in
lower layers and semantics in higher layers.

Much less work has looked at syntactic structures
in models of spoken language: one partial exception is
[20], who probe wav2vec2 and Mockingjay [21] for
the encoding of acoustic and linguistic information,
including syntax tree depth. The results reported are
quite surprising and even implausible in that the en-
coding of most linguistic features in the speech models
is found to be stronger than in the text-based BERT.

In this paper, we focus exclusively on probing for
syntactic structures, aiming to examine them in several
large-scale speech models, while taking care to include
two independent methods as well as all the appropri-
ate baselines and sanity checks in order to quantify the
encoding of syntax in a reliable way.

3. Methods
This study aims to reliably establish the presence of
syntactic information in models of spoken language.
We, therefore, use established methods for this type
of analysis and focus on careful experimental design
rather than technical novelty. We use two separate
probing techniques [5, 7], with several target models
trained and tested on two different datasets.

3.1. Datasets

We use two English audio datasets for the current
study: LibriSpeech [22] and SpokenCOCO [23]. Lib-
riSpeech consists of audiobook recordings from the
LibriVox project with a total of 960 hours of audio.
SpokenCOCO is a spoken version of the image cap-
tion dataset COCO [24] with more than 600,000 spo-
ken utterances paired with text captions and images.
We use the LibriSpeech train-100h split and the Spo-
kenCOCO validation split in our probing experiment
to reduce computational load. We filter out utterances
longer than 52 words for LibriSpeech and those longer
than 20 words for SpokenCOCO. Table 1 shows the
details of the data used in our experiments.

Table 1: Datasets used for this study.

Name #Utts. # Filtered Utts.

LibriSpeech 24,766 24,592
SpokenCOCO 28,539 27,496

3.2. Target Models

For this study, we use the following model variants as
specified in Table 2:
wav2vec2 [1] is pre-trained on LibriSpeech to dis-

criminate masked time steps in feature encoder out-
puts. In addition to the base pre-trained model, we
also include a fine-tuned base model and a fine-
tuned large model. The large model2 is fine-tuned
for English ASR on the same dataset. Additionally,
we fine-tuned the base model for English ASR on
our experimental data for 10,000 steps, which en-
ables us to check the effect of model size.

HuBERT [2] is similar to the wav2vec2 architecture
but pre-trained on labels created off-line via cluster-
ing; also pre-trained on LibriSpeech.

FaST-VGS [25] is a visually grounded model based
on the wav2vec2 architecture. It loads model
weights from the pre-trained wav2vec2-base with
randomly reinitialized final four layers and is fur-
ther trained on SpokenCOCO to match images with
the speech that describes them.

FaST-VGS+ [25] same as the previous model, but
trained on both SpokenCOCO and LibriSpeech with
a combination of the visually-grounded loss and the
wav2vec2 self-supervised loss.

BERT [11] text-based language model included as a
ceiling reference. BERT is pre-trained on 3,300M
words of books and web content.

2https://huggingface.co/
jonatasgrosman/wav2vec2-large-english
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BoW a text-based bag-of-words representation con-
structed from the combined text from both datasets
with all sentences containing non-Latin characters
removed. This representation captures all the words
in the utterance, but no word-order information.

Table 2: Models investigated in this study. PT = Pre-
Trained, FT = Fine-Tuned, SS = Self-Supervised, VS
= Visually Supervised, AV = Audio-Visual.

Model Size Train. Loss Mod.

wav2vec2 base PT SS Audio
wav2vec2 base FT SS Audio
wav2vec2 large3 FT SS Audio
HuBERT base PT SS Audio
FaST-VGS base PT VS AV
FaST-VGS+ base PT SS+VS AV

BERT base PT SS Text

BoW Text

3.3. TreeDepth Probe

The objective of this probe is to predict the maximum
depth of the constituency tree of a given utterance from
the activation pattern in each transformer layer of a
model when processing this utterance.

We generated hidden-state outputs and applied
mean-pooling along the time axis to generate utterance
vectors for all transformer layers of each model. We
used the Stanza parser [26] to generate constituency
trees for all utterances and calculate their tree depth.
We fit a ridge regression model on embeddings gener-
ated for both LibriSpeech and SpokenCOCO. As con-
trols, wordcount, and bag-of-words (BoW) model rep-
resentation and their combinations with the embed-
dings were used in training the regression model as
well. A 75:25 train-test split was used, and the model
selected via 10-fold cross-validation was then evalu-
ated on the test split and its score reported.

3.4. TreeKernel Probe

Representational Similarity Analysis (RSA) [27] is a
method which correlates the similarity structures of
two representational spaces. RSAregress [7] introduces
a trainable version of RSA, where two input and out-
put spaces are set up in terms of vectors of similarity to
a held-out set of anchor points, and then a multivariate
regression model is fit to map between them.

3The base models have 12 transformer layers and a hidden
size of 768; the large model has 24 layers and a hidden size
of 1024.

As in the original paper, we used cosine similar-
ity between vectors in the input space as metric, and
tree kernels between pairs of syntax trees in the out-
put space. Tree kernel is a way of measuring similar-
ities between syntactic trees by efficiently computing
the proportion of shared tree segments. After obtain-
ing the constituency trees, we delexicalized the trees
to ensure the tree kernel is only based on structure
and not word overlap. We used the algorithms intro-
duced in [28, 29] for computing the normalized tree
kernel; we closely followed the specific details in [7],
using parameter λ = 1

2
and two hundred anchor sen-

tences. The score of the model selected via 10-fold
cross-validation is reported.

For both probes, the hyperparameter tuned was
regularization strength α for values {10n | n ∈
{−3,−2,−1, 0, 1, 2}}.

4. Results
Figures 1 and 2 show the results for the TreeDepth
and TreeKernel probing tasks, respectively. For clar-
ity, Figure 1 only shows results on Librispeech.

(a) Text vs. audio models

(b) Pre-training vs. fine-tuning

(c) Self vs. visual supervision

Figure 1: R2 scores for predicting TreeDepth from em-
beddings (Librispeech). X-axis = transformer layer
from shallow to deep, orange dashed line = BoW refer-
ence, purple dashed line = Word count reference. See
Table 2 for panel headings.
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(a) Text vs. audio models

(b) Pre-training vs. fine-tuning

(c) Self vs. visual supervision

Figure 2: R2 scores for embedding distances and
TreeKernel. X-axis = transformer layer from shallow
to deep. Dashed lines = BoW reference. See Table 2
for panel headings.

Syntax encoding in spoken vs. text models. Fig-
ure 1a shows that spoken language models feature the
strongest encoding of tree depth in the middle to deep
layers. Concatenating wordcount features to embed-
dings in the TreeDepth task improves the probing re-
sults in the middle layers and outperforms the BoW
reference. Figure 2a shows a similar trend for the
TreeKernel probe.

As expected, both probing tasks show that syn-
tactic information is encoded more strongly and con-
sistently in text models across all layers.4 However,
TreeKernel results for the middle layers of the spo-
ken language models come close to the text models,
with wav2vec2-large-ft having the highest correlation
score. Overall, these results suggest that spoken lan-
guage models encode syntactic structure to a moder-
ate degree. Comparison with the BoW reference sug-
gests that most of the syntactic information encoded
in speech models is entangled with lexical representa-
tions, rather than being abstract.

4Our results contradict those of [20]: possibly due to them
report probing scores directly on probe-training data: the de-
scription in the paper is unclear on this point.

Pre-training vs. fine-tuning Figure 1b shows that
models fine-tuned on ASR achieve higher scores in
the TreeDepth probe than the pre-trained models. The
pre-trained models have a large dip at the final lay-
ers with the scores go back to those for the first layer.
For the fine-tuned models, the final layer dip is less
pronounced. The pre-training objective is to recon-
struct/discriminate audio features, whereas the fine-
tuning objective is to output well-formed transcrip-
tions, which requires more syntactic information to be
encoded in the activation patterns, resulting in the con-
trast between the final layer scores.

Comparing the panels in Figure 2b, we can see
that while fine-tuning increases the amount of syntac-
tic information encoded by the model, the size of the
model also matters. The larger hidden size and deeper
model architecture prove useful in encoding extra in-
formation. Wav2vec2-large-ft was also fine-tuned on
significantly more data than wav2vec2-base-ft.

Self- vs. Visual supervision As shown in Figures 1c
and 2c, the score curve from FaST-VGS+ has a similar
shape as wav2vec2-base. In addition to visual super-
vision, the plus variant also uses the same masked lan-
guage modeling loss as wav2vec2, and therefore the
two models behave similarly. In comparison, the fi-
nal layer dip is absent for the FaST-VGS model, likely
due to the fact that FaST-VGS does not use the self-
supervised objective, and thus not display a decrease
in syntax encoding in the final layers.

5. Conclusions
We use two established probing techniques to assess
the amount of syntactic information encoded by sev-
eral spoken language models. The results from both
probes confirm that spoken language models encode
a moderate level of syntactic information. We see that
different training objectives considerably affect the de-
gree of syntax encoded in each layer of the models and
so does model size, with text-based training and larger
model size leading to higher syntactic probe scores.

Our study only looks at sentence-level representa-
tions: it would also be interesting to extend our experi-
ments to sub-sentence level probing [6]. Additionally,
while we only use English datasets in this work, future
studies could compare the ability of large-scale spoken
language models to encode syntactic structures across
different languages.
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