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Abstract
Spoken language identification (SLI) is a key component in
speech-processing tools such as spoken language understand-
ing. In code-switching conversational speech, speakers change
languages for short durations posing an additional challenge to
language identification techniques. In this work, we investigate
the ability of a wav2vec2-based SLI method in identifying the
spoken language of English/Mandarin code-switching child-
directed conversational speech recorded via Zoom. The pro-
posed system allows the pre-trained wav2vec2-based model to
learn language-dependent phonological features by fine-tuning
first on detecting manners and places of articulation, then on
classifying between English and Mandarin speech segments.
The proposed system was tested against parent-child Zoom
recordings provided as a part of the MERLIon CCS challenge
of language identification. The system achieved the best bal-
anced accuracy of 81.3% and the second-lowest equal error rate
of 10.6%.
Index Terms: language identification, speech attributes,
wav2vec2, code-switching

1. Introduction
Spoken language identification (SLI), a core preprocessing
phase of many multi-lingual speech systems (e.g., multi-lingual
speech recognition, speech translation, speech transcription,
etc.), identifies the language spoken in a given utterance [1, 2].
Current SLI techniques have explored the use of acoustic fea-
tures such as linear predictive coding, filter banks, Mel fre-
quency cepstral coefficients to identify the utterance language
as they have been shown to present the dependency of phone
units on languages [3, 4]. Prosodic and phonotactic features,
which are not directly reflected by spectral features, have also
been investigated as additional sources of knowledge since both
levels of features provide complementary language cues [5, 6].
Having demonstrated effectiveness in speaker verification tasks,
i-vector based approaches have also been successfully applied
in SLI tasks [7, 8] and provided significant performance gain,
with compact utterance-level i-vectors extracted to express dis-
tinctions among different languages [9]. To make the final lan-
guage identification, these features have been fed to a number
of different classifier types, with statistical models, particularly
Gaussian mixture models and hidden Markov models, typically
adopted [10–12].

All these approaches [3–12] are only effective for long ut-
terances (typically no shorter than 3 sec). Their performance
degrades drastically when utterance duration decreases [13].
However in real-world code-switching scenarios, utterances can
be as short as 100 ms. Over the past decade, deep neural net-
works (DNNs) [14, 15], convolutional neural networks (CNNs)

[16], recurrent neural networks (RNNs) [17, 18], and attention-
based networks [19] have been successively used in SLI to bet-
ter capture the temporal dependencies present in short utter-
ances.

Given the lack of sufficient annotated data available to train
SLI models, recent work has explored leveraging upon self-
supervised speech representations learnt from large quantities
of unannotated data via optimizing a contrastive predictive ob-
jective [20, 21], and then fine-tuning the model with limited
annotated data for a downstream SLI task [22]. However, it
has been shown that if the front-end of a model is first pre-
trained with a relevant task (e.g., phoneme recognition), the
bottleneck features extracted by this pre-trained front-end can
be more effective for SLI than the raw acoustic features [13].
Since wav2vec2 is pre-trained to learn general purpose, mostly
language-independent, speech representations, we envision that
fine-tuning the pre-trained wav2vec2 first with a language-
dependent task, can provide a better initialization point to fine-
tune the ultimate SLI task.

In this paper, we thus investigate the effectiveness of pre-
training the wav2vec2 framework with phonological features,
specifically speech attributes. Speech attributes, such as the
manners and places of articulations, provide a low-level de-
scription of sound production of the articulators involved and
how these articulators move to produce a specific sound. Any
spoken language and its phoneme can be characterized in terms
of these attributes [23]. Here, we propose first fine-tuning the
pre-trained wav2vec2 framework to learn language-dependent
phonological features that include the manners and places of
articulations, as well as features such as voiced. We use this
approach to discriminate between English and Mandarin short
utterances (1.1 sec on average) as a part of the MERLIon CCS
challenge (language identification task).

The rest of the paper is organized as follows. Section 2
presents the proposed SLI system. Section 3 describes the ex-
perimental setup, while Section 4 provides the experimental re-
sults, followed by a conclusion in Section 5.

2. wav2vec2-based Spoken Language
Identification

Fig. 1 details our proposed SLI system for short utterances.
It consisted of two main blocks, a speech attribute detec-
tion network that feeds into a language identification network.
The speech attribute detection network M1 used a pre-trained
wav2vec2 architecture model followed by a linear layer in
which the neurons represented N English speech attributes.
The weights of the wav2vec2 part were initialized by a self-
supervised pre-trained model M0, while the weights of the lin-
ear layer were randomly initialized. The input of the speech
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Figure 1: Block diagram of proposed SLI system. The wav2vec2 pre-trained model is first fine-tuned using the Librispeech dataset to
detect the existence or absence of a set of speech attributes. The resultant model is then fine-tuned to classify between English and
Mandarin segments using the MERLIon challenge development set.

attribute detection network M1 includes only raw Librispeech
utterances of duration < 15 sec, due to the limitations of the
GPU memory size, and the target labels are N binary sequences
corresponding to the N speech attributes for each utterance.
The target sequences of each utterance were obtained by first
converting the orthographic transcription into a phonetic tran-
scription using a pronunciation dictionary [24] and then each
phoneme was mapped to their corresponding speech attributes.
A multi-label variant of the connectionist temporal classifica-
tion (CTC) method was used as the loss function [25].

The language identification network M2 was obtained by
replacing the last linear layer of M1 with a binary classification
head that classifies each utterance as English or Mandarin. The
wav2vec2 front-end of the network was first initialized using
the parameters of the fine-tuned M1, before fed by raw speech
segments of the MERLIon challenge development set with their
corresponding language labels used as the target outputs. Be-
cause of the short-duration nature of the dataset, we truncated
the training speech segments to 3 sec. The cross-entropy func-
tion was utilized to compute the loss of the language identifica-
tion network. In both networks, the specaugment method [26]
was used for data augmentation. Finally, the logit values of the
binary classification layer were used as the utterance scores of
English or Mandarin speech segments.

2.1. Speech Attribute Detection

Fig. 2 describes the speech attribute detection phase. As seen,
the raw speech signal is first transformed into a sequence
of speech representations using a pre-trained self-supervised
speech representation model. Here we adopt the wav2vec2
framework [20]. The extracted speech representations are then
fed to an output linear layer with dimension equal to the target
number of classes.

Unlike phonetic representation where each acoustic unit
is represented as a unique symbol or phoneme, phonological
features are non-mutually exclusive therefore each phonologi-
cal acoustic unit can have multiple phonological features. For
instance, the phoneme /m/ is described as nasal, voiced, and
labial. Therefore, the problem becomes a multi-label classifi-
cation problem. Each speech utterance can thus be mapped to
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Figure 2: Training procedure of the speech attribute detection
model. A linear layer is added on top of a wav2vec2-based
pre-trained model. For each speech utterance, the linear layer
converts the corresponding phoneme sequence to N binary se-
quences of speech attributes. The CTC loss is then computed for
each attribute sequence. Finally, the SCTC-SB loss is computed
by multiplying all speech attributes’ CTC losses.

different attribute sequences.
As the standard CTC method only solves a single-label

sequence-to-sequence problem [27], we used the separable con-
nectionist temporal classification with shared blank (SCTC-SB)
method, a multilabel variant of the CTC method we previously
proposed in [25]. The SCTC-SB method works by computing
the CTC loss over each labeling category separately and then
adding them together (i.e., multiplying the conditional proba-
bilities) to get the target loss and sharing the blank token among
all categories. The SCTC-SB loss function was then estimated
from the labeled data and the outputs of the linear layer. The
gradients derived from the loss function were further backprop-
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Table 1: List of employed speech attributes.

Manners Places Others

consonant, sonorant,
fricative, nasal,
stop, approximant,
affricate, liquid,
vowel, semivowel,
continuant

alveolar, palatal,
dental, glottal,
labial, velar,
mid, high,
low, front,
back, central,
anterior, posterior,
retroflex, bilabial,
coronal, dorsal

long, short,
monophthong,
diphthong,
round, voiced

agated to fine-tune the wav2vec2 front-end.
We used 35 speech attributes representing the manners and

places of articulation along with other phonological features as
listed in Table 1. These attributes were selected so that each
phoneme has a unique binary representation in terms of these
35 attributes. The 35 speech attributes were jointly learnt us-
ing the SCTC-SB criterion. A category for each attribute (att)
was defined with items Ci = {+att,−att}. The category that
represents the nasal attribute, for example, has possible outputs
of +nasal,-nasal. Therefore, the number of network outputs is
equal to 71, where 35 nodes represent the existence of each at-
tribute (+att), 35 nodes represent the absence of each attribute
(−att), and one node represents the blank output that is shared
among all categories. The network was fine-tuned using 100
hours of the Librispeech dataset. The phonetic transcription of
the dataset was extracted from the provided orthographic tran-
scription using the CMU pronunciation dictionary [24]. Each
phoneme was then mapped to +att, if the phoneme was char-
acterized by the underlying attribute or −att otherwise.

2.2. Language Identification

For the language identification phase, the wav2vec2 front-end
of the language identification network M2 was initialized from
M1, which has been fine-tuned for the speech attribute detec-
tion task as described in Section 2.1. Within M2, the last linear
layer inherited from M1 was replaced by a randomly initialized
classification head which consisted of a linear layer over the av-
erage pooled output of the contextual representation sequence.
This linear layer has 2 dimensions, each of which outputs a
score for a language (English/Mandarin). M2 was fine-tuned
on a subset of the MERLIon CCS development set and tested on
the rest of the development set. During the fine-tuning of M2,
all speech utterances were truncated to 3 seconds. This forces
the network to learn language discriminative features from short
speech segments.

3. Experimental Setup
3.1. Datasets

Two datasets were employed in this work, namely, the Lib-
rispeech (LS) and MERLIon (MER) datasets. The LS dataset
was used in the training and evaluation of the speech attribute
detection model M1. The model was trained on 100 hours of
the clean portion of the LS dataset as described in [28]. The de-
velopment (LS clean dev) and testing (LS clean test) subsets
of the clean portion were also utilized to monitor the train-
ing process and evaluate the model performance. The CMU
dictionary was used to obtain the phonetic transcription of the
LS orthographic transcription [29]. MER dataset was pro-

Table 2: The optimum training parameters of the system.

Parameters Speech Attribute Language Identification

optimizer AdamW AdamW
loss SCTC-SB cross entropy

learning rate 1e-4 1e-4
weight decay 0.005 0.005

batch size 32 16
N# epochs 30 10

warmup steps 10% of total steps 10% of total steps

vided with the challenge and consisted of two subsets, the de-
velopment (MER dev) and evaluation (MER eval) sets. Both
MER dev and MER eval are composed of parent-child con-
versation recordings via Zoom. Each subset contains record-
ings from 56 different parent-child pairs of which ∼85% En-
glish and ∼15% Mandarin. The MER dev set was associated
with the language label of each segment while the MER eval
set contained only the speech segments and the performance is
computed via CodaLab. Therefore, in this work, MER dev set
was further divided into training (MER dev train) and testing
(MER dev test) subsets to train and compare the performance
of different models. The MER dev train contained recordings
from 46 parent-child pairs while the remaining 10 pairs formed
the MER dev test set.

3.2. Training Procedure

The training of both speech attribute detection network M1 and
the language identification network M2 was performed using
the pytorch toolkit. Table 2 summarizes the training parameters
used to achieve the best performance.

All speech data was resampled to 16 kHz sampling rate and
the latent representations extracted from the feature extraction
(i.e., CNN) layer of the wav2vec2 front-end were further aug-
mented using SpecAugment [26]. In both tasks the feature ex-
traction layer was frozen (i.e., not learnt) during the fine-tuning
process.

3.3. Evaluation Metrics

For the speech attribute detection network, as the output is a
binary sequence of +att/ − att symbols, the traditional er-
ror rate derived from the Levenshtein distance metric [30] was
used. The Levenshtein distance metric works by measuring the
difference between two sequences in terms of the number of in-
sertion I , deletion D, and substitution S edits. Therefore, the
attribute error rate (AER) is computed as:

AER =
S +D + I

N
. (1)

For the language identification phase, two measures were
considered, namely, the equal error rate (EER) and the balanced
accuracy (BAC). The EER is defined as the point when both the
false acceptance rate (FAR) and false rejection rate (FRR) are
equal. In this challenge, FA occurs when a Mandarin segment is
recognized as English and FR occurs when an English segment
is recognized as Mandarin. The BAC is computed by first calcu-
lating the recall of the English and Mandarin classes separately
and then averaging them.
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3.4. Baseline Model

The provided baseline system is an end-to-end conformer model
that is composed of four conformer encoder layers, followed by
a statistics pooling layer and three linear layers with ReLU acti-
vation in the first two linear layers. Each self-attention encoder
layer employs eight attention heads with input and output di-
mensions set at 512. Subsequently, the statistics pooling layer
produces a 1024-dimensional output that is then projected onto
the target languages using three linear layers of 1024, 512, and
2 nodes respectively. The model was trained on 200 hours of
Aishell Mandarin data, 100 hours of Librispeech data, and 100
hours of National Speech Corpus data.

4. Experimental Results
Fig. 3 shows the performance of the speech attribute detection
network M1 in terms of the AER of the 35 adopted attributes.
The model was fine-tuned on the 100 hours LS clean and tested
against the LS dev and LS test sets. The figure shows that the
accuracies of all speech attributes of both sets are above 99%
(AER < 1%).
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Figure 3: The AER of the 35 speech attributes of the LS dev
and LS test sets obtained when wav2vec2-large-robust pre-
trained model was fine-tuned for speech attribute detection us-
ing SCTC-SB criteria.

The performance of the proposed language identification
model M2 and the challenge baseline model are summarized
in Table 3. Our proposed model was trained by first fine-tuning
the wav2vec2-large-robust model for the speech attribute task
using the LS clean dataset followed by fine-tuning for the lan-
guage identification task using the MER dev set. This system
achieved the highest BAC of 81.3% and the second-lowest EER
of 10.6% among all participants.

Table 3: The performance of the language identification system.

Model MER dev test MER eval
EER BAC EER BAC

Baseline - - 21.7% 50.9%
Proposed Model (M2) 10.65% 77.40% 10.6% 81.30%

To demonstrate the effectiveness of the speech attribute

Table 4: Comparison of language identification performances
of directly fine-tuned wav2vec2, wav2vec2 model that first fine-
tuned on phoneme recognition task, and wav2vec2 model that
first fine-tuned on attribute detection task.

Model EER BAC

Wav2vec2 11.3% 76.0%
Wav2vec2 + Phoneme 11.4% 77.0%
Wav2vec2 + Attribute 10.6% 77.3%

fine-tuning step on the language identification task, we con-
ducted two experiments. First, we used the wav2vec2-large-
robust pre-trained model and fine-tuned it directly to perform
the language identification step by adding the classification
head on top of the transformer output. Second, we fine-tuned
the wav2vec2-large-robust model for a phoneme classification
downstream task using LS clean dataset, followed by fine-
tuning for the language identification task. Table 4 compares
the performance of the two models and the proposed speech
attribute-based model in terms of their EER and BAC. The re-
sults show that fine-tuning of the wav2vec2 pre-trained model
directly for the language identification task achieved EER and
BAC of 11.3% and 76%, respectively. By fine-tuning the model
first on phoneme recognition, the EER degraded slightly but the
BAC improved from 76% to 77%. The lowest EER of 10.65%
was obtained by fine-tuning the model first to detect the speech
attributes followed by language classification.

In all previous models we froze the feature extraction part
of the wav2vec2 model, i.e., the CNN feature encoder. Fur-
ther training the feature encoder during the fine-tuning of the
language identification task, slightly increased the EER from
10.6% to 10.8% while the BAC dropped from 77.3% to 76%.

5. Conclusion
This paper described the proposed SLI system submitted to the
language identification task of the MERLIon CCS challenge.
The system identified the language of short English and Man-
darin utterances recorded from parent-child conversations via
Zoom. Our proposed method was based on the wav2vec2-large-
robust pre-trained model. The pre-trained model was first fine-
tuned to recognize 35 speech attribute (phonological) features
including manners and places of articulation. The speech at-
tribute model was then fine-tuned on the language identification
task to classify each utterance as English or Mandarin.

Experimental results showed that learning the language-
dependent phonological features relatively improved the BAC
and EER of the language identification task by ∼5% and ∼6%,
respectively, compared to fine-tuning the pre-trained model di-
rectly for the language identification task. This is probably due
to the phonological difference between the English and Man-
darin languages. For instance, in English voiceness is a distinc-
tive attribute that can distinguish one phoneme from another,
such as /t/ and /d/, while it is not a distinctive attribute in Man-
darin. Moreover, some phonological patterns such as conso-
nant clusters, i.e. multiple consecutive consonants, are common
in English while in Mandarin each consonant is followed by a
vowel [31].

The proposed method achieved the highest BAC of 81.3%
and the second lowest EER of 10.6% among all the participants
of the language identification challenge.
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