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Abstract
Text-to-Speech (TTS) systems have recently seen great progress
in synthesizing high-quality speech. However, the prosody of
generated utterances often is not as diverse as prosody of the
natural speech. In the case of multi-speaker or voice cloning
systems, this problem becomes even worse as information about
prosody may be present in the input text and the speaker embed-
ding. In this paper, we study the phenomenon of the presence of
emotional information in speaker embeddings recently revealed
for i-vectors and x-vectors. We show that the produced em-
beddings may include devoted components encoding prosodic
information. We further propose a technique for finding such
components and generating emotional speaker embeddings by
manipulating them. We then demonstrate that the emotional
TTS system based on the proposed method shows good perfor-
mance and has a smaller number of trained parameters com-
pared to solutions based on fine-tuning.
Index Terms: text-to-speech, prosody control, speaker verifi-
cation

1. Introduction
The recent advances in deep learning have resulted in great
progress in TTS technologies [1, 2, 3, 4]. However, it re-
mains a challenge to synthesize expressive speech that can accu-
rately capture prosodic characteristics of speech [5]. Several ap-
proaches have been proposed to address this problem, including
methods based on variational inference [2, 6, 7], explicit control
of prosody [8, 9], and using an external prosody encoder [4, 1].
One of the main challenges in training a TTS system capable
of fine-grained control of various speech parameters is to ob-
tain sufficiently disentangled representations of input text and
speaker and style embeddings. This problem becomes worse in
the case of voice cloning (VC) systems [10, 7, 11]. Usually,
such systems either are based on a few-shot model adaptation
[11, 10, 12] or make use of a devoted speaker encoder module
[13, 10]. In the latter case, such systems are sometimes called
zero-shot because they do not need transcriptions of the adapta-
tion phrases.

Since [13, 10] it has become a common practice to ob-
tain speaker embeddings from a pre-trained speaker classifier
trained on a sufficiently large dataset [14, 15]. The common
problem of such systems is their tendency to generate aver-
age neutral prosody [16]. On the other hand, in some cases,
the generated speech can have non-neutral but random and in-
adequate prosody. Recently, it has been demonstrated that i-
vectors and x-vectors contain style and emotion-related infor-
mation ([17], [18]). Technically, this is a problem of poor disen-
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tanglement which often leads to undesirable and unpredictable
changes in the speaking style in the synthesized utterances but
in many cases, the components corresponding to information
about prosody and emotions may be effectively detected and
manipulated.

In this paper, we analyze speaker embeddings obtained
from a pre-trained speaker verification model and identify com-
ponents that affect the emotional and prosodic features of the
speech. We further propose a procedure for the identification of
these components. Finally, we design a TTS system with con-
trollable prosodic and emotional features based on manipulating
the identified components. Subjective and objective tests show
that the emotions present in the speech generated by means of
such manipulations are recognized by humans and detected by
emotion recognition models.

The paper structure is as follows: in Section 2 we describe
the architecture of our TTS model and speaker encoder; in Sec-
tion 3 we provide evidence that the speaker embedding con-
tains components corresponding to emotions and prosody and
describe our method of detecting these key components; in Sec-
tion 4 we describe results of the subjective evaluation of the
Emotional TTS based on manipulating the key emotional com-
ponents; we conclude in Section 5.

2. Model
Our TTS model is a modified version of Non-Attentive Tacotron
(NAT) [19] which is a feature generation model based on
Tacotron2 [20] with duration predictor. We augment NAT
model with two additional modules for prosody control:
phoneme prosody predictor and pitch predictor.

Figure 1: Model Architecture. Speaker embedding are obtained
from the same pre-trained model.

Phoneme prosody predictor (see Fig.2) is implemented as
two convolution layers followed by one LSTM layer and a lin-
ear layer. Each convolution layer has 1-d convolution with 256
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Figure 2: Phoneme prosody predictor module

channels and kernel sizes k = 3 followed by relu activation,
batch normalization and dropout with rate 0.5. LSTM layer
includes a uni-directional LSTM with 256 units and zone-out
with rate of 0.1. The size of the final output projection is 4. For
prosody predictor training we use the same method as [1] with
the auxiliary prosody encoder module. They are trained jointly
with the model with additional mean squared error (MSE) loss
between predicted features. Pitch predictor is implemented as
two Bi-LSTM with 256 units and zone-out rate 0.1 and one pro-
jection layer.

The overall architecture is depicted in Fig.1. We predict
pitch frequencies directly. Duration predictor, decoder and en-
coder modules are the same as in NAT model. The model pre-
dicts mel-spectrogram features which are then fed to HiFi-GAN
vocoder operating at 22050 Hz. For most hyperparameters we
followed [19].

The model inputs phoneme sequence and reference audio
sample used to obtain speaker embedding. We add speaker em-
bedding as additional input to prosody, pitch, duration predic-
tors and decoder.

We were inspired by the idea that some speaker representa-
tions such as i-vectors and x-vectors contain style and emotion-
related information ([17], [18]) and may be applied to emotion
recognition task. In our case, we studied 256 dimentional d-
vectors, which were extracted from the pre-trained speaker ver-
ification model 1 (see [13]) trained on a combination of Lib-
riSpeech [14] and VoxCeleb [15] datasets. Below we test the
hypothesis that some components in the speaker embedding are
responsible for emotions and speaker independent. Manipula-
tion of such components allows to add emotions into generated
speech. In the next section, we discuss how these components
can be found and manipulated.

3. Method
Bearing in mind the simple truth that obtaining reliable disen-
tangled features for a TTS system is a difficult problem [7] we
started with a simple analysis of the speaker embeddings gener-
ated by our pre-trained speaker encoder. Our goal was to inves-
tigate how much information about emotions was stored in the
embeddings by our speaker encoder. The Fig.3 demonstrates
the results of LDA analysis of the embeddings calculated on the
phrases from ESD [21] dataset. ESD contains 350 parallel utter-
ances corresponding to one of 5 emotions (neutral, sad, angry,
happy, surprised) produced by 10 English speakers.

We may see that while some classes corresponding to emo-
tions in ESD may overlap all of them are separated from neutral
style. This observation proves that the speaker embeddings con-
tain information about emotions so we can try to find compo-
nents of the embeddings having the best influence on emotions
of the generated utterances.

1https://github.com/CorentinJ/Real-Time-Voice-Cloning

Figure 3: LDA projections of speaker embeddings giving the
best separation between classes of emotions in ESD. a) Neutral
vs. Angry; b) Neutral vs. Happy; c) Neutral vs. Surprise; d)
Neutral vs. Sad

3.1. Components selection

Below we describe a method of finding the key emotional com-
ponents based on selection of the most important features in the
SVM emotion classifier:

For each emotion e ∈ {sad, angry, happy, surprised}:

1. for each speaker s from the set of ESD speakers we train
a binary linear SVM classifier for each emotion e against
neutral with weights Wes

2. Calculate importance Ie =
∑

s Wes

3. Take top K components by absolute value as key compo-
nents for emotion e

For our experiments, we chose top-10 positive and top-20
negative components for each emotion. During our preliminary
experiments, we found out that setting top negative components
to zero worked as best as setting them to their optimal param-
eters, so we chose the first variant. The best values for top-
10 positive components were searched in the range (0, 2Me)
where Me is the maximum value of the embedding component
reached on the recordings corresponding to the target emotion e
in ESD. The optimal values were found via Bayesian optimiza-
tion [22].

Thus, for each emotion e we obtained a transformation
Te(s) mapping a neutral speaker embedding s into an emotional
speaker embedding se used as input to our TTS model. Each
transformation had only 10 parameters found through an opti-
mization process. Below we give a detailed description of the
optimization procedure.

3.2. Hyperparameter optimization

Bayesian optimization is a popular method of parameter selec-
tion in cases when the optimized function f(θ) is expensive
to evaluate. It utilizes a surrogate model to estimate value of
the target function depending on the parameter values θt and
then choose the next parameter combination θt+1 to try. The
surrogate model is usually a Gaussian process that provides a
Bayesian posterior probability distribution p(f(θ)) over poten-
tial values of the objective function. Each time we estimate a
function at a new point θt+1, this posterior distribution is up-
dated and used in a pre-selected acquisition function α(θ) to
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define where to sample next.
An objective function in our task is a combination of three

scores s1, s2, s3 each of which controls one of the following
characteristic:
• Sound quality score. Mean opinion score (MOS) is a sub-

jective metric, so it cannot be used in the optimization sce-
nario. For our objective function we used score s1 obtained
from automatic MOS estimation model NORESQA MOS
[23]. NORESQA MOS is based on Non-Matching Refer-
ences (NMRs) approach and trained to predict a relative qual-
ity score compared to any provided reference without depen-
dence on content and speaker’s gender. It shows high gen-
eralization ability on out-of-domain datasets and has open-
source realization and model2. Three records of different
speakers from VCTK dataset [24] were utilized as references.
It is a high-quality dataset with samples form 109 native En-
glish speakers.

• Emotion score. To ensure that speech synthesized with mod-
ified speaker embedding is expressive we trained a simple 5-
class emotion classifier on the training part of ESD dataset
following the architecture described in [21]: one LSTM and
two dense layers with mel frequency cepstral coefficients
(MFCCs) as input features. The final classifier accuracy on
the dataset testing records reached 88.3%. Predicted proba-
bility of the target emotion was used as score s2 for optimiza-
tion.

• Speaker similarity Score. Component manipulation must
influence only emotions, preserving speaker characteristics.
For speaker similarity control we chose SOTA speaker rep-
resentation model TitaNet [25] trained with speaker identi-
fication objective. We employ prediction of the largest pre-
trained speaker verification model as the score s3. An em-
bedding from synthesized speech is compared with the em-
bedding from the ground truth record of the target speaker
and emotion.

We run Bayesian optimization for 200 iterations for each
emotion separately. At every step of optimization we gener-
ated 3 sentences for every 10 English speakers from ESD with
speaker embeddings modified according to the chosen values of
the current component. Described scores s1, s2, s3 were av-
eraged across all records and summed with weights w1 = 1,
w2 = 5, w3 = 12. For the experiments we used implementa-
tion from scikit-optimize library.

3.3. Model validation

To verify our hypothesis of the ability of emotion manipulation
we conducted a subjective experiment, which was designed as
a preference test against a baseline model without changes in
speaker embedding. For testing purposes, we took the same
10 speakers from ESD and synthesized 4 sentences for 4 emo-
tions: angry, happy, sad, and surprise. Every synthesized ut-
terance was evaluated by 10 assessors on Amazon Mechani-
cal Turk (AMT). The overall number of unique workers who
participated in our tests was 46. To ensure the high quality of
the obtained preference levels, only Master workers were al-
lowed to complete tasks. Each task contained two variants of
the same synthesized dialog with two different versions of the
second phrase: one was synthesized by the baseline model and
another was synthesized by the emotional model. Each worker
was asked which recording sounded better in terms of expressed
emotions.

2https://github.com/facebookresearch/Noresqa

Table 1: Preference test on Amazon Mechanical Turk

Baseline Preferred Emotional Preferred
Surprise 46.19% 53.81%
Happy 45.54% 54.46%

Sad 56.37% 43.63%
Angry 30.05% 69.95%
Overall 45.0% 55.0%

The results are shown in Table 1. We may see that for emo-
tions surprise, happy and angry the assessors prefer the mod-
ified version. The emotion sad got a lower rate from the as-
sessors. This emotion was less discernible and easily confused
with non-emotional neutral class. In this case assessors pre-
ferred the baseline as the recordings generated by the baseline
model tended to have better sound quality (see Section 4). Nev-
ertheless, we see that the preference test and the emotional clas-
sifier performance clearly indicate that the proposed method al-
lows generating emotional speech which proves that our method
is valid.

In the next section, we test the model against other meth-
ods of controllable TTS in terms of emotion fidelity, speaker
similarity, and sound quality.

4. Experiments
The goal of our main experiment was to understand the trade-off
between the general features of the multi-speaker TTS system
(i.e. sound quality and speaker similarity) and the capability of
the model to generate the expressive speech as the results of the
preference test on class sad suggested that manipulating the key
emotional components of the speaker embedding could lead to
degradation in sound quality or speaker similarity. Our second
goal was to compare our method with one of the standard meth-
ods of emotional speech synthesis. For comparison we chose
Tacotron with Global Style Tokens (GST) model [26].

For a more fair comparison we used a modified version
of GST model. The sequence-to-sequence Tacotron part was
replaced with Non-attentive Tacotron with the same architec-
ture and parameters as in the main model including speaker
embedding conditioning. The reference encoder and the style
token layer were the same as in [26]: a stack of the 6 convolu-
tional layers followed by a single layer unidirectional GRU and
a multi-head attention module with 4 heads and 10 style tokens.

The baseline NAT and GST models were trained on Lib-
riTTS dataset [27] which is a multi-speaker English corpus
of approximately 585 hours of read English speech. As long
as LibriTTS contained mostly neutral utterances GST model
was unable to copy emotions from emotional reference record-
ings. For this reason, GST model was additionally fine-tuned
on ESD dataset. One reference audio and speaker embedding
averaged across all recordings made by the speaker with the
corresponding emotion were passed as input. Thus, after fine-
tuning each speaker had 4 speaker embeddings corresponding
to 256 × 4 = 1024 parameters per speaker which gives 10.2k
parameters for 10 English speakers used in our experiments.

The experiments were carried out on the Appen platform.
We asked participants to estimate speaker similarity and sound
quality of the synthesized speech on a 5-point scale. In addi-
tion, for each recording, the participant was asked which emo-
tion dominated in the generated utterance with 5 options cor-
responding to the emotions from ESD. We synthesized 3 sen-
tences for each of the 10 English speakers and 4 non-neutral
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emotions from ESD, resulting in 120 records. In each task,
the participant was given a neutral reference audio of the target
speaker, one neutral ground-truth recording of the same speaker,
one bad recording for quality control, and 3 synthesized record-
ings. The aim of adding the neutral ground-truth recording was
to estimate an upper bound for similarity and sound quality be-
cause generally they may vary between groups of workers. Each
audio was assessed by 10 participants to ensure reliability of
our results. To ensure the high quality of the obtained prefer-
ence levels, native English workers with level 2 were allowed
to complete tasks. The total number of participants was 240.

We also needed to estimate the upper bound of emotion
recognition accuracy for our workers. For this reason, we run
additional test on ground truth emotional recordings. We asked
participants to label emotions for the recordings from ESD. We
synthesized 3 sentences for 10 speakers and 4 non-neutral emo-
tions from ESD. Each audio was assessed by 10 participants.

Table 2: Subjective tests on Appen: Speaker similarity (SMOS),
Sound Quality (MOS) and Emotion recognition accuracy. Score
with (*) was obtained in a separate test run with emotional
recordings.

Similarity Sound Quality Recog. acc.
Baseline 3.70± 0.05 3.96± 0.05 9.8%

EM (Ours) 3.55± 0.08 3.76± 0.06 57.9%
GST 3.61± 0.08 3.75± 0.06 58.1%
GT 4.06± 0.05 4.09± 0.05 58.2∗%

The results are summarized in the Table 2. The results
support the assumption that there is a trade-off between sim-
ilarity and expressiveness of the speech. The baseline model
has shown the best performance in terms of sound quality and
speaker similarity while for both emotional models we see a
drop in these scores although the score ranges overlap. We con-
sider that emotional recordings in LibriTTS are enough for the
TTS model to learn how to detect and exploit the emotional
components in the embeddings but not enough to learn how to
synthesize emotional recordings for any voice.

We see that performance of both emotional models is sim-
ilar but the number of additional parameters needed to sup-
port emotions in our method is much lower: only 40 versus
over 10k for GST. Moreover, in fact the parameters of em-
bedding transformations may also work in zero-shot settings
for non-ESD speakers which is also an advantage of our ap-
proach compared to fine-tuning based ones. A subset of au-
dio samples used in the human evaluation and examples of
zero-shot emotional synthesis are available on our demo page
https://controllable-tts.github.io/.

5. Conclusions
In this work we have investigated the possibility of controlling
emotions of the generated speech by manipulating specific com-
ponents of the speaker embedding. We showed that such com-
ponents can be effectively detected and manipulated. We also
proposed a method of speech synthesis making use of speaker
embedding manipulation and showed that this method could
demonstrate performance comparable to widely used models
of controllable speech generation with no need for fine-tuning
on emotional data. We believe that the analysis of the emo-
tional components should be an important part of the design of
multi-speaker TTS systems making use of pre-trained speaker
encoder.
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