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Abstract
Multi-frame algorithms for single-channel speech enhancement
are able to take advantage from short-time correlations within
the speech signal. Deep Filtering (DF) was proposed to directly
estimate a complex filter in frequency domain to take advantage
of these correlations.

In this work, we present a real-time speech enhancement
demo using DeepFilterNet. DeepFilterNet’s efficiency is en-
abled by exploiting domain knowledge of speech production
and psychoacoustic perception. Our model is able to match
state-of-the-art speech enhancement benchmarks while achiev-
ing a real-time-factor of 0.19 on a single threaded notebook
CPU. The framework as well as pretrained weights have been
published under an open source license.
Index Terms: speech enhancement, multi-frame filtering, deep
filtering

1. Introduction
Recently, various speech enhancement models take advantage
of properties of psychoacoustic perception. That is, a speech
model consisting of a periodic (voiced) and a noisy component
is assumed [1, 2, 3]. Further, it can be assumed that the exact
phase of the noisy speech component is not relevant. Rather
reconstructing the speech envelope at a course frequency reso-
lution is sufficient so that the resulting component sounds like
the original speech. For the voiced speech however, reconstruct-
ing the phase, or, improving the periodicity is important in low
signal-to-noise ratio (SNR) conditions. Multi-frame (MF) fil-
tering in frequency domain was proposed to take advantage of
short-time speech correlations, since speech can be decomposed
into a correlated and an interfering component [4]. Deep filter-
ing (DF) [5, 6] has been recently used to directly estimate the
complex frequency domain filter that is able to enhance the pe-
riodic component. It has been shown, that deep filtering out-
performs the mostly used complex ratio mask (CRM) [3] and
achieves state-of-the-art results [7].

In this work, we summarize our proposed DeepFilterNet
framework and show some improved results over previous
work [7]. Due to its efficiency, we can use the model for real-
time noise reduction e.g. in video-calls.

2. Deep Filtering
2.1. Signal Model
Let x(k) be a mixture signal

x(k) = s(k) + z(k), (1)

where s(k) is a clean speech signal and z(k) an interfer-
ing background noise. Typically, noise reduction operates in
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Figure 1: DeepFilterNet Framework.

time/frequency domain:

X(t, f) = S(t, f) + Z(t, f), (2)

where X(t, f) is the STFT representation of the time domain
signal x(k) and t, f are the time and frequency bins. To sim-
plify the following, we omit the frequency index f since all
frequency bins are processed equivalently. Further, with filter
length N , we define the noisy multi-frame vector as x̄t ∈ CN :

x̄(t) = [X(t+ l), X(t−1+ l), . . . , X(t−N +1+ l)]T , (3)

where l is an optional look-ahead parameter. Due to the look-
ahead, the filter will include non-causal taps which introduces
additional latency. And with the complex filter w̄(t) ∈ CN

w̄DF(t) = [W0(t),W1(t), . . . ,WN−1(t)]
T (4)

we define the deep filtering as:

Y (t) = w̄DF(t)
Hx̄(t) , (5)

where ◦H denotes the conjugate transpose operator. As men-
tioned above, deep filtering directly estimates the complex filter
w̄DF(t).

3. DeepFilterNet Framework
Figure 1 shows a schematic depiction of the DeepFilterNet
noise reduction framework. The model operates in two stage:
1. Enhancing the speech envelope at a coarse frequency resolu-
tion, and 2. enhancing the speech periodicity using DF.

DeepFilterNet operates in 48 kHz sampling rate on 20ms
windows with a hop size of 10ms. Additionally, a look-ahead
of 2 frames is used resulting in an overall latency of 40ms.
The first stage operates in real-valued ERB (equivalent rectan-
gular bandwidth) domain and predicts 32 ERB scaled gains that
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are pointwise multiplied with the noisy spectrum, which allows
to reconstruct the overall speech envelope. The second stage
predicts a complex filter N = 5 tap filter in frequency do-
main. This filter is only applied for the lowest 96 frequency
bins, i.e. up to 4.8 kHz. The final enhanced output spectrum is
then constructed from DF output for the lower frequencies and
the ERB gain output for the higher frequencies.

We take advantage of several properties of speech produc-
tion model and psychoacoustics:

• The speech consists of a noisy and a periodic (short-time cor-
related) component [8].

• Loudness perception is logarithmic. This is used in the ERB
feature calculation and the loss.

• Frequency perception is logarithmic. ERB feature logarith-
mically compress the input spectrum with 481 frequency bins
to 32 ERB bands which reduces dimensions of the neural net-
work input and output [9].

• Most of voiced (periodic) speech energy is below 5 kHz.
• Moreover, the human ear is most sensitive around 2 kHz to
5 kHz [10]. Thus, the second stage enhancing the speech pe-
riodicity via DF is only applied up to approx. 5 kHz. This
further reduces input and output dimension of the neural net-
work.

We further predict the local SNR ξ ∈ [−15, 35] dB within
the encoder network on frame level. This allows to completely
disable the ERB or the DF decoder depending on the current
noise conditions. That is, we define the following criteria:

ξ < −10 dB: Disable both decoders, return silent spectrum.
ξ > 20 dB: Disable DF decoder. Only low noise condition,

enhancing the periodicity is not necessary.
else: Run all stages for best noise reduction.

We implemented a real-time loop in Rust and use tract1 as
DNN inference framework. DeepFilterNet achieves a single-
threaded real-time factor of 0.19 on a notebook i5-8250U CPU
and is published under a permissive license2.

4. Experiments and Results
We train the slightly modified DeepFilterNet model on the full
multi-lingual DNS4 dataset [11], while oversampling the high-
quality PTDB and VCTK datasets by a factor of 10 and evaluate
on the unseen VCTK/DEMAND test set (Table 1).

Table 1: Objective results on Voicebank+Demand test set

Model PESQ CSIG CBAK COVL STOI
DeepFilterNet [3] 2.81 4.14 3.31 3.46 0.942
DeepFilterNet2 [7] 3.08 4.30 3.40 3.70 0.943
DeepFilterNet3 3.17 4.34 3.61 3.77 0.944

Figure 2 shows the proposed demo for live background
noise suppression. Due to its efficiency, we can listen to the
audio in real-time. Further, we can dynamically configure the
noise attenuation and modify thresholds where the first and sec-
ond denoising stage are disabled. Moreover, the DeepFilter-
Net real-time implementation can also be used for live noise
reduction by adding a virtual microphone on Linux systems
with pipewire via an LADSPA plugin. This allows for real-time
noise reduction e.g. during video calls.

1https://github.com/sonos/tract
2https://github.com/Rikorose/DeepFilterNet

Figure 2: DeepFilterNet Live Demo.
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