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Abstract
Multi-frame algorithms for single-channel speech enhancement
are able to take advantage from short-time correlations within
the speech signal. Deep filtering (DF) recently demonstrated its
capabilities for low-latency scenarios like hearing aids with its
complex multi-frame (MF) filter. Alternatively, the complex fil-
ter can be estimated via an MF minimum variance distortionless
response (MVDR), or MF Wiener filter (WF). Previous studies
have shown that incorporating algorithm domain knowledge us-
ing an MVDR filter might be beneficial compared to the direct
filter estimation via DF.

In this work, we compare the usage of various multi-frame
filters such as DF, MF-MVDR, or MF-WF for HAs. We assess
different covariance estimation methods for both MF-MVDR
and MF-WF and objectively demonstrate an improved perfor-
mance compared to direct DF estimation, significantly out-
performing related work while improving the runtime perfor-
mance.
Index Terms: hearing aids, speech enhancement, multi-frame
filtering

1. Introduction
Hearing aids (HA) usually employ a filter bank [1] similar to
an STFT, as frequency transformation. Subsequent process-
ing steps, including single-channel noise reduction, is then per-
formed in time/frequency (TF) domain. The low-latency re-
quirements of HAs of 6ms to 10ms, however, usually result
in a very poor frequency resolution. This makes noise reduc-
tion within HAs particularly challenging since frequency reso-
lution usually correlates well with noise reduction performance
up to a certain point. Especially single-frame Wiener filter ap-
proaches [2, 3, 4] are used with a noise attenuation limit of
6 dB to 12 dB since more attenuation would result in speech
distortion and roughness. This is because a one-tap Wiener
filter reduces to a single real-valued gain and thus is not able
to recover the clean phase. Other options, like a complex ra-
tio mask (CRM), are able to theoretically restore the original
phase. However, especially in low-latency scenarios the avail-
able frequency resolution may be limited down to 250Hz. For
a low fundamental frequency, this may result in up to 5 speech
harmonics within one frequency bin which makes estimating
a phase correction factor inherently harder for the CRM [5].
Therefore, complex filters [6, 7] introduced as deep filtering
(DF) have been used for allowing a stronger noise attenuation in
HAs [5]. Further, DF outperformes complex ratio masks, espe-
cially with a low frequency resolution of HA filter banks [8, 5]

Recently, deep MF beamforming filters have been proposed
in contrast to direct estimation of the filter coefficients within
DF [9, 10, 11, 12]. In contrast to classical beamforming us-

ing multiple channels, the inter-frame correlations are used to
derive a complex filter in TF domain. Huang [9] proposed to
decompose multi-frame speech signal into a inter-frame corre-
lated component and a interfering component. This assump-
tion allowed them to introduce an MF-MVDR beamformer with
classical parameter estimation. Zhang et al. [12] proposed to
use DF to estimate a clean speech signal which is then used for
classical estimation of the MVDR parameters. Similarly, Pan
et.al [13] used a CRM followed by an estimation of MF Wiener
or MVDR filter statistics. However, MF MVDR and Wiener
filter perform worse compared to the only CRM enhanced out-
put signal e.g. in terms of PESQ. Tamen et al. [11] proposed a
deep MF-MVDR filter where a neural network was used to es-
timate the inter-frame correlation matrices of speech and noise
signals. The authors reported that the deep MF-MVDR filter
outperforms direct DF estimation.

In this work we follow [11] and estimate the covariance
matrices directly using a DNN. We evaluate different covari-
ance estimation methods and compare DF to deep multi-frame
MVDR and Wiener filters.

2. Multi-Frame Filtering
2.1. Signal Model

Let x(k) be a mixture signal
x(k) = s(k) + z(k), (1)

where s(k) is a clean speech signal and z(k) an interfering
background noise. Typically, HA noise reduction operates in
time/frequency domain:

X(t, f) = S(t, f) + Z(t, f), (2)

where X(t, f) is the filter bank representation of the time do-
main signal x(k) and t, f are the time and frequency bins.

2.2. Deep Filtering and Multi-Frame Signal Model

Deep filtering was proposed to take advantage from short-time
correlations within the speech signal [7] and for signal recon-
struction e.g. by destructive interference or package loss [6].
In the following, we describe the initial deep filter proposal,
where the filter weights are directly estimated by a deep neu-
ral network (DNN). Further, we make the bridge to multi-frame
processing using MVDR or Wiener filtering and describe the
MF signal model taking advantage of speech inter-frame corre-
lations.

Deep filtering is defined by a complex filter in TF-domain
[6, 7]:

Y (t, f) =

N−1∑

i=0

W ∗
i (t, f) ·X(t− i+ l, f) , (3)
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where W ∗ are the complex conjugated coefficients of filter or-
der N that are applied to the input spectrogram X , and Ŷ the
enhanced spectrogram. l is an optional look-ahead, which al-
lows incorporating non-causal taps in the linear combination if
l ≥ 1. In previous work, additionally also included filtering
along the frequency axis allowing to incorporate correlations
e.g. due to overlapping bands [5], which is not considered in
this study. This of course could also be used within the beam-
forming algorithms.

To simplify the following, we omit the frequency index f
since all frequency bins are processed equivalently. Further,
with filter length N , we define the noisy multi-frame vector as
x̄t ∈ CN :

x̄(t) = [X(t+ l), X(t−1+ l), . . . , X(t−N +1+ l)]T . (4)

And with the complex filter w̄(t) ∈ CN

w̄(t) = [W0(t),W1(t), . . . ,WN−1(t)]
T (5)

the complex filter of Equation (3) reduces to:

Y (t) = w̄DF(t)
Hx̄(t) , (6)

where ◦H denotes the conjugate transpose operator. As men-
tioned above, deep filtering directly estimates the complex fil-
ter w̄DF(t). However, w̄(t) can also be estimated using multi-
frame beamforming algorithms which will be described in the
following.

Assuming speech and noise are uncorrelated (which is re-
quirement for Eq. 1), the noisy covariance matrix Φyy(t) ∈
CN×N is given by

Φyy(t) = E[ȳ(t)ȳH(t)] = Φss(t) + Φzz(t), (7)

where E[◦] is the mathematical expectation. The matrices
Φss(t) and Φzz(t) are defined analogously.

We further assume after [9, 14] that the speech signal con-
sists of a desired, short-time correlated component s̄c and an
uncorrelated, interfering component s̄i wrt. the speech coeffi-
cient S(t):

s̄(t) = s̄c(t) + s̄i(t) (8)

with
s̄c(t) = γ̄s(t)S(t). (9)

The speech inter-frame correlation (IFC) vector γ̄s(t) is highly
time-varying and is defined as

γ̄s(t) =
E[s(t)S(t)∗]

E[|S(t)|2] =
Φsse

eTΦsse
, (10)

where e = [1, 0, 0, . . . , 0]T ∈ RN is the N -dimensional selec-
tion vector. Note, that a different selection index may be used
e.g. when using non-causal taps within the filter. The denomi-
nator eTΦsse corresponds to the speech power spectral density
(PSD) φs(t). Thus, the first element of the speech IFC vector
equals 1:

eTγ̄s(t) = 1. (11)

When considering the uncorrelated speech component as inter-
ference, with (8) and (9), the multi-frame signal model is given
by

x̄(t) = γ̄s(t)S(t) + ū(t) , (12)

where ū(t) = s̄i(t) + z̄(t) is the undesired noise and interfer-
ence vector.

2.3. Multi-Frame Wiener Filter

As mentioned above, single-frame (tap) Wiener filters reduce
to a single real-valued gain. In the following we describe the
general form resulting in a complex filter w̄(t).

The Wiener filter tries to directly minimize the difference
between clean speech S(t) and the prediction Y (t) using the
mean squared error (MSE):

w̄WF(t) = argmin
w̄

E[|S(t)− Y (t)|2]

= argmin
w̄

E[|S(t)− w̄H(t)x̄(t)|2]
(13)

With the uncorrelation assumption between speech and
noise, the solution of (13) is given by

w̄WF(t) = Φ−1
xxE[x̄(t)S(t)] = Φ−1

xx γ̄s . (14)

2.4. Multi-Frame MVDR Filter

In contrast to Wiener filtering which tries to be optimal
wrt. SNR, the MVDR filter is optimal wrt. speech distortion.
Given a standard filter-and-sum beamformer [15]

E[|Y (t)|2] = E[w̄Hx̄x̄Hw̄] = w̄Φxxw̄
H, (15)

the following distortionless response constraint requires that the
predicted output Y (t) is equal to the target speech S(t):

Y (t) = w̄H(t)γ̄s(t)S(t)
!
= S(t) (16)

Now, the MVDR filter can be defined as

min
w̄
w̄H(t)Φxx(t)w̄(t), s.t. w̄H(t)γ̄s(t) = 1. (17)

Solving this minimization problem leads to the MF-MVDR
beamformer [16, 17, 9]:

w̄MVDR(t) =
Φ−1

xx (t)γ̄s

γ̄H
s Φ−1

xx γ̄s
. (18)

Following [17, 15], we assume noise ū(t) and s̄(t) being un-
correlated, we can rewrite Φxx using (12)

Φxx(t) = φs(t)γ̄s(t)γ̄
H
s (t) + Φuu(t), (19)

where Φuu(t) represents the undesired noise and interference
covariance matrix. With (19), it can be shown [17, 15] that the
MVDR beamformer can be rewritten to

w̄MVDR(t) =
Φ−1

uu (t)γ̄s

γ̄H
s Φ−1

uu γ̄s
. (20)

2.5. Filter Estimation

To estimate filter weights w̄WF and w̄MVDR we need to estimate
the speech IFC vector γ̄s as well as the covariance matrices Φxx

or Φuu. Similar to [18], we directly estimate the IFC vector
γ̄s ∈ CN followed by a normalization to fulfill (11).

Within preliminary experiments, we discovered that es-
timating the noisy covariance matrix Φxx(t) using a DNN
provides better results compared to estimating it via statistics
like [13]. We explain this with the update speed of noisy co-
variance matrix and IFC vector. A DNN estimate is superior
over a recursive update of Φxx(t) [13] since it can adapt the
update speed depending on the current noise and speech con-
ditions. Second, we estimate the noise covariance matrix in
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Eq. (20) [19, 20, 11], in contrast to [13] who used the MVDR
implementation of Eq. (18).

We compare the following configurations for covariance esti-
mation:

1. Direct estimation. We directly estimate Φxx, and Φuu. For
numerical stability, we apply diagonal loading of 1× 10−7

before matrix inversion.
2. Inverse estimation. To avoid computing the inverse of Φ,

we directly estimate the inverse Φ−1.
3. Hermitian. As stated above, the covariance matrix can be as-

sumed to be Hermitian positive-definite. Thus, we can define
the Hermitian PSDH(t) via

Φ(t) =H(t)HH(t), (21)

where H(t) ∈ CN×N is the Hermitian matrix [11]. By es-
timatingH , the matrix multiplication ensures that the result-
ing covariance matrices fulfill its hermitian properties.

4. Hermitian of inverse. Since the inverse Φ−1 is also Hermi-
tian positive-definite, we estimate the Hermitian PSD of the
inverse:

Φ−1(t) =H(t)HH(t). (22)
We further tested enforcing Hermitian properties of the pre-

dicted covariance or estimating a Cholesky decomposition of
the predicted Hermitian similar to [18]. However, the results
presented in section 4.1 did not change significantly.

3. Training Framework
3.1. DeepFilterNet Framework

We adopt the perceptual approach of DeepFilterNet [8, 21]
which also has been used for hearing aids [5]. The two-stage
denoising process takes advantage of auditory properties which
allows for relatively efficient DNN. That is, the first stage only
operates in real-valued ERB (equivalent rectangular bandwidth)
domain and tries to recover the speech envelope. The second
stage uses MF filtering to enhance the periodic part of speech
up to a frequency of fmf = 4kHz which covers most of the
energy of the periodic speech component.

Instead of a short-time Fourier transformation (STFT) used
in [21], we employ a 24 kHz uniform polyphase hearing aid
filter bank [1] with 48 frequency bands and a frequency resolu-
tion of 250Hz. The filter bank roughly corresponds to an STFT
with a window size of 4ms and a hop size of 1ms. Note that
other filter banks [22] may achieve a better frequency analysis
resolution which was not considered since we want to be able
to integrate this method into an existing hearing aid setup.

We apply both denoising stages in parallel for practical rea-
sons like better concurrency possibilities. Hence, the MF filter
is applied to the noisy spectrum instead of the pre-enhanced
spectrum of stage 1 unlike in [21]. Further, for the MVDR
and Wiener filter estimation we add another grouped linear out-
put layer for the covariance matrix estimation. Even though
the DNN input and output is complex-valued, the DNN only
operates on real-valued tensors. The full source code except
the hearing aid filter bank is publicly available at https:
//github.com/rikorose/deepfilternet.

3.2. Datasets and Training
We use the multi-lingual DNS4 dataset [23] for training. Fol-
lowing [8], we oversample the included high quality datasets
VCTK [] and PTDB by a factor of 10. Moreover, we
trimmed silences and filtered the dataset with DNSMOS
V4 [23] to only include samples with overall mean opinion
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ERBFeatures
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Figure 1: Two-stage noise reduction framework using a real-
valued ERB stage followed by the multi-frame (MF) filtering
stage based on [21]. Instead of (I)STFT, we employ hearing aid
analysis (AFB) and synthesis filter banks (SFB). Depending on
the configuration the second stage predicts directly the deep fil-
ter coefficientwDF, or the speech IFC vector γ̄s and covariance
matrices Φ for the Wiener and MVDR filters.

score (OVRL MOS) greater than 3. We split the datasets
into training/development/test (70/15/15%). VCTK and PTDB
were split on speaker level ensuring no overlap with the
VCTK/Demand test set [24]. The remaining English read
speech and noise datasets are split on signal level. We con-
duct preliminary experiments using only VCTK + PTDB as
speech datasets and report results on the VCTK/Demand test
set [24]. For evaluation of the final models, we further report
results on the recent DNS5 track 2 blind test set [23] and an in-
ternal test set recorded with HAs containing 30 noisy samples
without groundtruth.

Data preprocessing and augmentation is adopted from [21].
Additionally, we resample the data to 24 kHz to match the filter
bank sampling rate. Declipping and dereverberation were not
considered in this work.

We decreased the model size by reducing the convolution
channels to 16 and the number of hidden units of the GRU
layers to 128 resulting in 510 k parameters of the DNN. We
adopted the loss function from [21], trained all models for 100
epochs, and applied early stopping based on the development
set. We use AdamW optimizer, an initial learning rate of 0.001,
learning rate decay of 0.5 per epoch, and weight decay of 0.05.
The latter is especially important for stable gradient due to com-
plex number processing, matrix inversions and division with
small numbers e.g. in (Eq. 20).

4. Experiments
The following performance metrics were employed to evaluate
our multi-frame filtering approaches. The time-domain scale-
invariant signal-distortion-ratio (SI-SDR) [25], and the fre-
quency domain measures PESQ [26] and STOI [27], as well as
the composite measures CSIG, CBAK and COVL [28]. Further,
we adopt the “pseudo”-subjective measure DNSMOS V5 [23]
for judging signal quality of signals without groundtruth. Fur-
ther, we provide the real-time-factor (RTF) on a notebook Core-
i5 quad-core CPU for inference speed evaluation.

4.1. Covariance Estimation
We conducted preliminary experiments to find the best way of
estimating the covariance matrices Φxx(t) (WF) and Φuu(t)
(MVDR). As we can see in Table 1, estimating the Hermitian of
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Table 1: Comparison of different covariance estimation options
of Section 2.5 based on the VCTK/Demand dataset. “Invert.”
stands for estimating the inverse covariance matrix, “Herm.”
stands for estimating H(t) instead of Φ as in Equations (21),
(22). Bold values denote best results for this metric.
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MF-WF 17.00 2.61 0.924 3.66 3.23 3.13
MF-WF X 17.10 2.62 0.925 3.65 3.22 3.11
MF-WF X 17.06 2.62 0.925 3.61 3.24 3.11
MF-WF X X 17.13 2.63 0.926 3.69 3.23 3.15
MF-MVDR ———— Φuu not invertible ————
MF-MVDR X 16.81 2.53 0.921 3.61 3.17 3.06
MF-MVDR X ————- Bad convergence ————-
MF-MVDR X X 17.31 2.65 0.929 3.70 3.24 3.17

Table 2: Objective results on the VCTK/Demand dataset. All
models use a uniform polyphase filter bank and introduce an
algorithmic latency of 8 ms including 2 frames of look-ahead.
Number of parameter (Params) in million.
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WF [3] 50.00 - 8.94 2.12 0.942 3.33 2.43 2.79
MF-DF [5] 0.87 0.25 14.04 2.65 0.938 4.01 3.17 3.32
MF-DF 0.51 0.1818.21 2.85 0.943 4.09 3.39 3.46
MF-WF 0.53 0.19 17.94 2.91 0.943 4.13 3.42 3.52
MF-MVDR 0.53 0.19 18.18 2.90 0.945 4.12 3.43 3.51

Φ or Φ−1 seems crucial for the MVDR filter as Φuu(t) is not
invertible with the direct estimate. Directly estimating the in-
verse covariance matrix, resulted in a distorted audio which did
not improve during training. The Wiener filter however, is not
so sensitive wrt. the different estimation methods as only small
differences can be observed. The estimated Hermitian matrix
provides a noticeable benefit for the MF Wiener filter. Thus, for
further experiments, we chose to estimate the Hermitian PSD of
the covariance inverse for both WF and MVDR (i.e. row 4 and
8 of Table 1).

4.2. Comparison of MF Deep Filtering / Wiener Filter /
MVDR Filter

We evaluated our models on the VCTK/Demand test set and
provide a comparison with related algorithms using a hearing
aid filter bank with the same frequency resolution[3, 5]. As we
can see in table 2, our all proposed multi-frame filters outper-
form related work. Further, MF-WF and MF-MVDR provide
slightly superior results over direct filter estimation using deep
filtering.

Figures 2 and 3 provide “pseudo”-subjective measures on
two noisy datasets without a groundtruth. On the DNS5 blind
test set, MF-WF achieves the highest background MOS (BAK),
that is, the lowest background distortion. The MF-MVDR
model however, is able to retain more speech compared to DF
and WF within the internal HA dataset.

This can further be observed in a qualitative figure of a sam-
ple from the HA test set (Figure 4). While DF and similarly also
MF-WF wrongly suppresses the first few seconds of speech in
a noisy HA recording, the MF-MVDR is able to quickly adopt
to new speech. This matches with the motivation of both multi-
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Figure 2: DNSMOS V5 [23] on the DNS5 blind test set.
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Figure 3: DNSMOS V5 [23] on the internal HA test set.

frame filters. The MF-WF provides a stronger noise suppres-
sion at the cost of more speech degradation, the MF-MVDR fil-
ter however, tries to keep speech distortion at a minimum level
and sacrifices a little noise reduction in return.
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Figure 4: Sample from the internal HA test set.

5. Conclusions
In this study, we presented a deep learning-based multi-frame
filtering method for hearing aids. We evaluated different meth-
ods of estimating the covariance matrices for MF-WF and MF-
MVDR and provided evidence that the presented MF Wiener
filter and MVDR filter outperform direct filter estimation.

Especially the MF-MVDR filter is relevant for hearing aid
usage, since minimal speech distortion is one of the key require-
ments of HA noise reduction algorithms. Although noise is sup-
pressed robustly, when running separate instances on the left
and right hearing aids we observed spatial distortions specifi-
cally with MF-DF and MF-WF processing. Therefore, further
research is needed in the area of filter synchronization between
devices.
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