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Abstract

With Speech-to-Electromyography Generative Adversarial Net-
work (STE-GAN), we propose a model which can synthesize
Electromyography (EMG) signals from acoustic speech. We
condition the generator network on representations of the spo-
ken content obtained from a voice conversion model. Given
these representations, the generator outputs an EMG signal cor-
responding to the articulated content of the acoustic speech in
the setting of a specific EMG recording session. In compari-
son to previous work, STE-GAN directly generates EMG sig-
nals from acoustic speech. As it uses more speaker-independent
content representations as input, it can synthesize EMG signals
from speech of speakers who were unseen during training.
Index Terms: electromyography, acoustic to articulatory inver-
sion, silent speech interfaces, generative adversarial networks

1. Introduction

Surface Electromyography (EMG) signals of articulatory mus-
cles reflect the speech production process [1]. As such, they are
a biosignal of interest for Silent Speech Interfaces (SSIs) [2],
which aim to enable speech communication without depending
on acoustic speech. The driving force of EMG-based SSIs are
EMG-to-Speech (ETS) models, which convert EMG signals to
the corresponding acoustic speech signal [3, 4, 5, 6]. Recent
work [7, 8] started to examine the inverse problem: Speech-to-
EMG (STE) i.e. predicting EMG signals from acoustic speech.
STE is related to acoustic-to-articulatory inversion, in which
acoustic speech is used to predict articulator trajectories, cap-
tured by, e.g., Electromagnetic Articulography (EMA) [9], X-
ray microbeam [10], or ultrasound imaging [11]. Potential ap-
plications of STE lie in speech therapy, as the activity of artic-
ulatory muscles could be predicted without EMG equipment.
STE could also be explored to generate new, artificial EMG
signals to improve ETS model training. These downstream
tasks require that STE models can synthesize EMG signals from
speech and speakers which were unseen during training. The
first studies on STE [7, 8] evaluated the prediction of EMG fea-
tures from acoustics, and the generation of EMG signals from
their Ground-Truth (GT) EMG features as independent prob-
lems. As such, they did not investigate the direct prediction of
EMG signals from speech.

To address this challenge, we propose Speech-to-EMG
Generative Adversarial Network (STE-GAN). It directly con-
verts acoustic speech to corresponding EMG signals (see Fig.
1). We base our system on neural vocoders [12, 13] and ad-
just the architecture and losses for EMG generation. We condi-
tion the EMG generator on speech content representations ex-
tracted by Voice Conversion (VC) models [14]. In comparison
to acoustic features such as mel-spectrograms, VC content rep-
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Figure 1: STE-GAN converts acoustic speech to corresponding
multi-channel electromyography signals.

resentations are designed to discard speaker information. As
such, STE-GAN could be more applicable to generate EMG
signals from speech of unseen speakers for downstream tasks.
For STE-GAN, we use the soft Speech Units (SUs) of van Niek-
erk et al. [14], because soft SUs can be predicted by ETS mod-
els [6]. As EMG signals vary between recording sessions, we
additionally condition the generator network on learned session
embeddings. To generate realistic EMG signals, STE-GAN
minimizes Time-Domain (TD) feature [15] differences between
real and fake signals. Lastly, we use the gradients of a pre-
trained EMG encoder during training [16]. We evaluate our
model on two EMG data sets and generate EMG signals from
speech inputs of unseen speakers using the LibriTTS data set
[17]. We compare STE-GAN with systems based on previous
work [8] which first predict EMG features from acoustic speech
and then predict EMG signals.

2. Related Work

GANs [18] have been utilized to generate various biosig-
nals, such as EMG [19, 20, 21], Electrencephaloraphy (EEG)
[22, 23], Electrocardiography (ECG) [24, 25], or EMA [16].
The SynSigGAN model of Hazra and Byun [19] is able to gen-
erate a variety of biosignals, such EEG, ECG or EMG. Chen
et al. [20] train a Deep Convolutional GAN (DCGAN) to syn-
thesize EMG features of hand gestures. Zanini and Colombini
[21] use a modified DCGAN model to generate EMG signals
from Parkison’s disease patients. To the best of our knowl-
edge, no prior work has used GANs for STE. An early study
on STE is the work of Botelho et al. [7]. The authors first train
a Neural Network (NN) to predict EMG TD features from Mel-
Frequency Cepstral Coefficients (MFCCs). Then, they train
a Convolutional Neural Network (CNN) - Long Short-Term
Memory (LSTM) network to predict EMG signals from GT TD
features. Sharma et al. [8] evaluate additional features and mod-
els for this task. The authors use a 5-layer Bidirectional LSTM
(BLSTM) for mapping MFCCs to EMG features. For predict-
ing EMG signals from GT EMG features, they find that adding
Hilbert envelope features increases the generation quality.
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Figure 2: Training of the STE-GAN model.
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3. Speech-to-Electromyography GAN
3.1. Network architectures

We base STE-GAN on neural vocoders, in particular HiFi-GAN
[12] and CARGAN [13]. We modify the network architectures
for processing multi-channel EMG signals at a sample rate of
800 Hz (see Fig. 2). The network architectures are available in
the code repository of STE-GAN'.

EMG Generator The generator G outputs the C'-channel
EMG signal given a sequence of speech features and the session
identifier of the EMG signal (see Fig. 2). For speech features,
we use the "HuBERT-Soft” encoder [14] to extract soft SUs
at a frame rate of 50 Hz. We combine the SUs with a learn-
able, 64-dimensional session embedding by feature vector con-
catenation. The resulting input feature sequence is processed
by a modified GAN-TTS architecture [26]. It comprises eight
Gblocks, of which the four middle blocks upsample the feature
sequence by a factor of 2 respectively. The output layer is an 1D
convolution layer with a ranh activation function and outputs a
C-channel EMG signal at 800 Hz.

EMG Discriminators The discriminator networks pro-
cess the C-channel EMG signals at 800 Hz. We use modified
Multi-Scale Discriminator (MSD) and Multi-Period Discrimi-
nator (MPD) architectures of HiFi-GAN [12]. We lower the
number of layers and kernel sizes to approximate the original
receptive field of the discriminators at the lower EMG sample
rate. We use 3 MSDs, processing EMG signals at different tem-
poral resolutions, and 5 MPDs with periods 2, 3, 5, 7, and 11.

EMG Encoder Similar to the ArticulationGAN [16], we
incorporate a model which was trained on the same modality
as the generator output. We use a pre-trained EMG encoder
E which predicts soft SUs from the EMG signal. As such it
performs the inverse prediction as the EMG generator G. Ad-
ditionally, E predicts framewise phoneme classes. We use the
network architecture of Gaddy and Klein [4] which was modi-
fied for soft SU prediction [6]. Convolutional layers first down-
sample the EMG signal to features with a 50 Hz frame rate.
A transformer encoder then processes the resulting feature se-
quence. The model has two output layers which predict frame-
wise soft SUs and phonemes respectively.

3.2. Training losses

For training the STE-GAN, we use a subset of the losses of
HiFi-GAN [12]. In particular, we minimize the Least-Squares
GAN [27] adversarial losses L 44,. We further use the feature
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matching loss L£ras, in which the L1 loss of the discriminator
activations between real and fake inputs is minimized. We refer
to Kong et al. [12] for further details on £ 44, and Lgas. STE-
GAN uses the following additional losses (see Fig. 2).

Speech Unit Loss We minimize the Euclidian distance be-
tween soft SUs predicted by the EMG encoder using the gener-
ator output, and the GT soft SUs from the speech input [6]:

Tsu

Lav(@) = 7 3 lle = E(Gleodl: )
where ¢ denotes the GT soft SU target sequence and s is the
session embedding of the EMG signal. E.(G(c,s)) denotes
the soft SU output of E' using the EMG synthesis of G given ¢
and s. During training, F is frozen and only G is updated.

Phoneme Loss We minimize the cross-entropy loss be-
tween phonemes predicted by F, given the fake EMG signal,
and the GT phoneme sequence p as phoneme loss [4, 6].

Tsu |P|

Z th,i -log E,(G(c,8))t,:

t=1 i=1

1
Tsu

Lp(G) (2)

where P is the set of phonemes and by ; indicates whether
phoneme ¢ at frame index t is the target phoneme p;.
E,(G(c,s))+,; denotes the probability for phoneme ¢ at frame
t predicted by the EMG encoder given the generator output.
Multi-Time-Domain Loss TD features of the EMG signal
have been used in various work on ETS [3, 28, 29] and were
used as model inputs for EMG signal generation in previous
work [7, 8]. We therefore minimize the difference between TD
features of original and generated EMG signals as loss func-
tion. We use the TD feature implementation of Jou et al. [15]
and apply a 9-point double-averaging filter on the EMG signal
X to obtain a low-frequency signal w. We then compute a rec-
tified, high-frequency residual signal r = |x — w|. The used
TD feature sets then comprise the mean and power values of
windowed frames of w and r respectively. For the Multi-Time-
Domain (MTD) loss, we use Krp different TD feature imple-
mentations with varying window sizes and shifts to evaluate the
EMG signal at multiple resolutions. We minimize the sum of
mean L1 distances between TD vectors for K7 p TD sets:

Krp 1 Tékzg @ .
Lrp(G)= Y —5 > ITD" (x) —TD(G(c,9))|h
k=1 TTD Jj=1

3)
where x denotes the real EMG signal. ng is the number of
windows of the EMG signals using the kth TD feature imple-
mentation. TD§k) denotes the TD feature vector of the jth sig-
nal window using the kth TD implementation. For our experi-
ments, we use three TD feature sets with window sizes / shifts
of 25/ 10, 64/ 16, and 100 / 25 milliseconds respectively.

Total Loss The total loss of the EMG generators and dis-
criminators is:

K

Lo = Z[ﬁAdv(G; D) + Arm Lrn(G; Dy)) @
k=1
+ AsuLlsu (G) + )\PEP(G) + ArpLrp (G)
K
Lp =2 Law(Di;G) ®)

k=1
where K denotes the number of discriminators. We scale the

feature matching, speech unit, phoneme, and MTD losses with
scalar weights respectively.



4. Experiment Setup
4.1. EMG data sets

We evaluate STE-GAN with two data sets. First, we use the
corpus of Gaddy and Klein [29] in the open vocabulary condi-
tion. One subject reads English sentences in audible and silent
articulation respectively. 8-channel EMG signals are recorded
at a 1000 Hz sample rate. We ignore utterances of silent ar-
ticulation, since no parallel GT audio is available. We use the
same EMG filtering steps as in the authors’ implementation®.
We downsample the EMG signals to 800 Hz and apply the tanh
function, such that the amplitude range is —1 to 1. We use the
pre-defined validation and testing splits, but use utterances with
EMG signals of audible articulation. We ignore samples which
transcriptions contain no alphanumerical characters. The train,
validation, and test splits contain 6755, 199, and 98 utterances.

We further evaluate our model on the "JEMG-ArraySingle-
A-500+" data set [30], which contains EMG signals recorded
during normal articulation of English sentences. Subjects wore
multi-array electrodes on their cheek and chin. We focus on the
largest session ”S3-Array-Lrg”, for which we use a pre-defined
channel set of 15 channels. We first process the EMG signals
with a notch filter at 50 Hz and a bandpass filter with cut-offs
at 10 Hz and 400 Hz. We downsample the EMG signals to 800
Hz and z-normalize each channel with utterance-level statistics.
Lastly, we apply amplitude downscaling by a factor of 10 and
the ranh function. We use the pre-defined train, validation, and
test splits, which contain 1771, 196, and 40 utterances.

4.2. Training settings and implementation

We base our implementation on the CARGAN [13] repository?.
We use the "HuBERT-Soft” model of van Niekerk et al. [14] to
extract soft SUs from acoustic speech’. The EMG encoder is
pre-trained on the respective training sets as outlined by Scheck
and Schultz [6]. We train the STE-GAN with the AdamW op-
timizer [31] with a learning rate of 2e—4 and a batch size of
32. We set the loss weights, based on values of CARGAN, to
Arv = 7.0, \rp = 15.0, Asy = 1.0, and A\p = 1.0. We
found that these values give an adequate performance. As such,
instead of a hyper-parameter search, we focus on ablation stud-
ies to investigate the impact of each individual loss by setting
loss weights to 0.0. During training, we randomly slice 2048
EMG samples and ignore training utterances with less sam-
ples. We initialize the EMG generator and discriminators from
scratch and train the models for 25k steps. When no losses of
the EMG encoder are optimized, we train up to 250k steps, as
validation metrics require more steps to improve. We use an In-
tel(R) Xeon(R) Gold 5118 CPU and an NVIDIA GeForce RTX
2080 Ti GPU. The time for 25k steps is approx. 4 hours.

4.3. Baselines for comparison

We first compare the STE-GAN with the two-step system of
Sharma et al. [8]. It consists of two models: First, a BLSTM
predicts EMG features of all channels from MFCCs. Subse-
quently, a CNN-BLSTM predicts the EMG signal of a single
channel from its GT EMG features. We additionally condition

’https://github.com/dgaddy/silent_speech
(Commit £12495e)
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Table 1: Evaluated models and their parameter count in million.

Model Param. (m)
EMG Generator 23.50
EMG Discriminators (total) 11.90
EMG Encoder 58.50
Two-Step: BLSTM (MFCC — EMG Feat.) 15.70
Two-Step: CNN-LSTM (EMG Feat. — EMG Signal) 8.60
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Figure 3: The real and fake EMG signal, generated by STE-
GAN, of an utterance of the Gaddy and Klein corpus. The navy
and dotted, orange lines are the envelopes (Env. CC = 0.80).

the first model on the target session with a 64-dimensional ses-
sion embedding by feature concatenation. We set the output size
of the CNN-BLSTM to 8 to produce 800 Hz signals. Lastly, we
increase the dimensionality of the first BLSTM model to 384
such that the number of parameters of both models approxi-
mates the size of the EMG generator (see Table 1). As Sharma
et al. [8], we train the models individually using the Mean
Squared Error (MSE) loss. To compare the system with STE-
GAN, we use the predictions of the first model as inputs for the
second model. We also evaluate STE-GAN variants which use
similar approaches. STE-GAN (MFCCs+MSE) uses MFCCs as
input and is solely trained with the MSE loss applied on EMG
signals. STE-GAN (MSE) is also trained with the MSE loss, but
takes soft SUs as input. STE-GAN (MFCCs) uses MFCCs, but
is trained with the same losses as the proposed STE-GAN (SU).

4.4. Evaluation metrics

For measuring the similarity between real and fake EMG sig-
nals, we compare their envelopes, as the amplitude of raw EMG
signals is quasi-random [32]. As Zanini et al. [21], we com-
pute the envelopes by rectifying the signals and applying an
average filter with a window size of 50 ms (see Fig. 3). We
then measure the mean Envelope Correlation Coefficient (Env.
CC). We furthermore use the pre-trained EMG encoder to as-
sess whether the generator synthesizes EMG signals which re-
flect the speech input. As Speech Unit Distance (SU Dist.), we
compute the mean Euclidian distance between GT soft SUs of
the audio input and the soft SUs predicted by the EMG encoder
from generated EMG signals. We compute averaged utterance-
level, framewise phoneme accuracies, excluding silence, us-
ing EMG encoder phoneme predictions on fake EMG signals
(Phon. Acc.). We furthermore convert soft SUs predicted from
fake EMG back to acoustic speech using the acoustic model and
vocoder of van Niekerk et al. [14]4. We transcribe the speech
synthesis with the Whisper [33] "medium.en” model and calcu-
late the Word Error Rate (WER). To evaluate whether models
can generate EMG signals from speech of unseen speakers, we
generate EMG signals from 200 utterances of the LibriTTS [17]
“test-clean” split, uniformly distributed between its 39 speakers.



Table 2: Results obtained by STE models using audio utterances of the EMG test sets and 200 utterances of LibriTTS.

EMG Test Audio (1 Speaker)

LibriTTS Audio (39 Speakers)

Model / EMG Data Env. CC Phon. Acc. SUDist. WER Phon. Acc. SUDist. WER
Gaddy and Klein [29]

Two-Step: BLSTM — CNN-BLSTM 0.46 0.00 937  106.37 0.00 1041 108.09
STE-GAN (MFCCs + MSE) 0.55 2.66 796  99.94 3.85 852  98.42
STE-GAN (MSE) 0.60 1.67 827 100.49 3.74 858 9971
STE-GAN (MFCCs) 0.62 77.24 228 2138 37.99 513 8791
STE-GAN (SU) 0.66 82.65 1.87 1029 76.86 263 1228
S3-Array-Lrg [30]

Two-Step: BLSTM — CNN-BLSTM 0.38 033 765 125.13 0.00 782 12522
STE-GAN (MFCCs + MSE) 0.56 36.23 516 103.77 7.88 756 104.50
STE-GAN (MSE) 0.61 45.01 464 9874 33.28 578 104.82
STE-GAN (MFCCs) 0.63 79.25 217 8.04 20.77 626  99.95
STE-GAN (SU) 0.66 $1.73 188  6.53 65.01 312 2171

5. Results
5.1. EMG signal reconstruction quality

Table 2 lists the obtained results of the evaluated models on the
respective data test splits. The Two-Step model achieves worse
evaluation results compared to all STE-GAN models. A pos-
sible reason for this could be that some TD features, such as
the zero-crossing rate, are challenging to predict from acoustic
speech, but provide important information for EMG signal re-
construction [7]. The most similar model STE-GAN (MFCCs
+ MSE) achieves better results, which could indicate that STE
models benefit from end-to-end training. STE-GAN models
trained with the proposed losses, STE-GAN (MFCCs) and STE-
GAN (SUs), outperform models trained with the MSE loss on
all metrics. The proposed model STE-GAN (SUs) achieves the
overall best results. In particular, it achieves the highest Env.
CC of 0.66 for both data sets. It further obtains a Phon. Acc.
of over 80% for generated EMG using audio of the EMG test
splits. This indicates that the EMG generator can synthesize
EMG signals which reflect the articulated content of the speech
input.

5.2. EMG generation from speech of unseen speakers

While STE-GAN (MFCCs) and STE-GAN (SU) both perform
well for the EMG test splits when compared to other models,
STE-GAN (SU) outperforms STE-GAN (MFCCs) for LibriTTS
in the multi-speaker setup. Using MFCCs instead of SUs leads
to worse results in this setting. For instance, the WER of STE-
GAN (MFCCs), trained on S3-Array-Lrg, increases from ap-
prox. 8% to 100%. In comparison, the WER increase for STE-
GAN (SU) is from 7% to 22% for S3-Array-Lrg. For STE-GAN
(SU) trained on the Gaddy and Klein corpus, the WER increases
by only 2%. As such, using soft SUs as input enables the EMG
generator to generalize to speech of unseen speakers.

5.3. Impact of loss functions

Table 3 lists the results obtained by STE-GAN models which
were trained with subsets of the proposed losses. Removing
the MTD loss leads to the largest decrease in Env. CC, how-
ever improves most other metrics. Removing the phoneme loss
does not lead to a consistently lower performance when com-
paring to the full STE-GAN model. However, removing both
phoneme and SU loss leads to a worsening in all metrics. In this
setting, the WER also increases from approx. 10% to 19% for
the Gaddy and Klein data and from 7% to 81% for S3-Array-
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Table 3: Ablation study results for the EMG data test split.

Model / EMG Data Env. CC Phon. Acc. SUDist. WER
Gaddy and Klein [29]

STE-GAN (SU) 0.66 82.65 1.87 10.29
- MTD Loss 0.63 84.36 1.62 7.17
- Phoneme Loss 0.67 82.72 1.85 10.78
- SU Loss 0.66 81.96 2.34 11.09
- SU & Phoneme Loss 0.65 75.76 2.60 19.18
S3-Array-Lrg [30]

STE-GAN (SU) 0.66 81.73 1.88 6.53
- MTD Loss 0.60 81.46 1.84 5.03
- Phoneme Loss 0.66 81.07 1.84 5.28
- SU Loss 0.66 77.92 2.47 14.32
- SU & Phoneme Loss 0.62 51.53 4.24 80.65

Lrg. A possible reason for the difference in WER increase be-
tween data sets could be their number of training utterances.
For the smaller data set S3-Array-Lrg, incorporating at least
one loss involving the EMG encoder is required for adequate
performance. For the larger Gaddy and Klein corpus, the EMG
generator learns to predict EMG signals reflecting the speech
properties without using the EMG encoder during training.

6. Conclusions

We have proposed Speech-to-Electromyography Generative
Adversarial Network (STE-GAN), a model which generates
EMG signals from acoustic speech signals. In comparison to
previous work, it performs the mapping in an end-to-end fash-
ion i.e. it converts acoustic signals to the EMG signal without
the need to first predict intermediate EMG features. Further-
more, since it uses soft speech units as inputs, it can create EMG
signals from speech of multiple speakers who are not included
in the training set. Since STE-GAN is not yet applicable to on-
line processing, the practical use is still limited. We therefore
aim to develop a real-time capable version of the model and
evaluate it on EMG data sets with multiple speakers.
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