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Abstract
Self-supervised learning (SSL) is the latest breakthrough in
speech processing, especially for label-scarce downstream tasks
by leveraging massive unlabeled audio data. The noise robust-
ness of the SSL is one of the important challenges to expanding
its application. We can use speech enhancement (SE) to tackle
this issue. However, the mismatch between the SE model and
SSL models potentially limits its effect. In this work, we pro-
pose a new SE training criterion that minimizes the distance be-
tween clean and enhanced signals in the feature representation
of the SSL model to alleviate the mismatch. We expect that the
loss in the SSL domain could guide SE training to preserve or
enhance various levels of characteristics of the speech signals
that may be required for high-level downstream tasks. Experi-
ments show that our proposal improves the performance of an
SE and SSL pipeline on five downstream tasks with noisy input
while maintaining the SE performance.
Index Terms: speech enhancement, self-supervised learning,
SUPERB benchmark, denoising, deep learning

1. Introduction
In the past decade, advances in deep learning have drastically
improved speech processing technology and its real-world im-
plementation. The supervised learning framework has been a
central component of these advancements, as it improves the
performance in proportion to the amount of available labeled
data [1, 2]. However, the annotation cost of labeled data con-
strains performance, particularly in tasks where a large amount
of labeled data is either unavailable or too expensive to obtain.

To address this issue, self-supervised learning (SSL), a
machine learning technique that can learn useful representa-
tions without the need for artificially labeled data, is attract-
ing research attention [3–5]. One research goal of SSL in
speech processing is to obtain a single SSL model whose task-
agnostic representations are effective for various downstream
tasks [6–10]. To this end, various techniques have been pro-
posed, among which wav2vec 2.0 [11], HuBERT [12], and
WavLM [13] are some of the most widely applied approaches.
Indeed they provide effective representations for various down-
stream tasks [14, 15].

The noise robustness of the SSL is one of the critical chal-
lenges to expanding its application, although this issue has not
yet been fully examined. Among the leading SSL models,
WavLM [13] addresses the issue of robustness against noise
and overlapping speech from interfering background speakers
by incorporating a denoising framework into the pre-training
process. The prior study showed that it was relatively robust
to noise [16]. Besides, Chung et al revealed that the noise ro-
bustness of SSL models could be further improved by introduc-
ing a single-channel speech enhancement (SE) frontend [17].

They showed that the SE, SSL, and automatic speech recog-
nition (ASR) pipeline achieves state-of-the-art performance on
the monaural CHiME-4 task. However, they also reported that
the fine-tuning of SE frontend on the downstream ASR task is
critically necessary to benefit from the SE frontend. In other
words, the SE model trained separately from SSL models with
the SE training objective suffers from a mismatch with SSL
models, potentially limiting SE performance.

To address this issue, we propose an SSL Mean Square Er-
ror (SSL-MSE) loss as way of learning an SE model optimal
as the frontend of the SSL model while being independent of
the downstream tasks, e.g., ASR. Contrary to the conventional
SE training objective that minimizes the distance between en-
hanced speech and clean source in the time or spectrum domain,
SSL-MSE aims to bring these signals closer in the feature do-
main projected by the SSL model, which makes enhanced sig-
nal well suited for the SSL model. Moreover, we propose using
a multi-task training objective that combines the SSL-MSE loss
with a conventional SE loss to preserve SE capabilities of the
front-end. Since SSL models have been shown to learn effec-
tive representations for many downstream tasks, they can cap-
ture not only acoustic but also higher-level information such as
phonetic or semantic information [18–20]. Thus, we expect that
creating a loss term in the SSL domain could guide SE training
to preserve or enhance various levels of characteristics of the
speech signals that may be required for high-level downstream
tasks.

A major difference between SSL-MSE training and the
fine-tuning approach of the SE model with a downstream task
adopted in [17] is that ours can train the SE model in a down-
stream task agnostic manner. In [17], the SE frontend and
downstream ASR models are jointly trained on the ASR cri-
terion while freezing the SSL model. On the other hand, our
proposal constructs a single SE model suitable for a general
SSL pipeline that can be applied to various downstream tasks
without requiring downstream task-specific fine-tuning. This
allows sharing a single SE and SSL model for multiple down-
stream tasks by only training the relatively small-sized down-
stream model for each task.

We confirmed the effectiveness of the proposed SSL-MSE
loss with various downstream tasks by performing experiments
on a noisy version of a subset of the SUPERB benchmark [14]
The result shows that the proposed SSL-MSE substantially im-
proves the performance of downstream tasks using WavLM.
Our proposal is also effective even with noise-robust down-
stream models trained with noisy paired data. Moreover, when
using the multitask loss, the proposed SE system maintains SE
performance, allowing using it also for applications requiring
access to the enhanced speech signal, e.g., listening applica-
tions. It can also contribute to the interpretability of the process.
An interesting finding of our study is that SE systems trained
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with SSL-MSE loss generalize to downstream tasks using dif-
ferent SSL models from those used for the SSL-MSE training.
This seems to confirm our intuition that the task-agnostic fea-
ture representation of SSL models helps us to learn a more ro-
bust SE frontend.

2. Conventional Method

2.1. Task-agnostic SSL upstream models

Various types of SSL methods have been proposed to extract
powerful features or representations from speech recordings
that are useful for downstream tasks. We can write the feature
extraction process with the SSL model as follows:

F1:N = SSL(x;θssl), (1)

where x ∈ RT denotes the monaural input signal in raw wave-
form with T samples, Fn ∈ RD×T ′

denotes the time series
of extracted features obtained from the n-th layer of the SSL
model, N is the number of layers of the SSL model, and θssl

denotes the learnable parameters of the SSL model. T ′ and D
denote the number of frames and dimensions of the extracted
features, respectively. The learnable parameters, θssl are trained
using pretext tasks with unpaired audio-only data. For example,
HuBERT [12] and WavLM [13] are trained using the BERT-
like masked prediction task [21] on the target label generated in
an offline clustering step. Of particular note, WavLM is made
robust to noise and interference speakers through the addition
of Deep Noise Suppression (DNS) noise [22] and interference
speakers during its training. Various types of pre-trained SSL
models have been made publicly available for application to
downstream tasks.

2.2. Task specific downstream models

There are two major ways to apply SSL models to downstream
tasks, either as a fixed feature extractor, or permitting retraining
of their parameters [3]. Following previous studies [14, 16, 17],
we adopted the former approach, i.e., freezing the parameters
of the SSL model θssl during the training of the downstream
models, because SSL models are usually very large and thus,
it is computationally too intensive to fine-tune the SSL models
for every downstream task. The downstream task-specific ad-
ditional layers are relatively small deep neural networks, which
we call the downstream model.

An effective way to apply the SSL features across various
types of downstream tasks is to use the weighted sum of the
embeddings from different layers in SSL model as the input
feature of the downstream model [13, 14]. The process of the
downstream model for a task τ can be written as follows:

F τ = WS(F1:N ;θτ
w) ≡

N∑

n=1

wτ
nFn, (2)

l̂τ = DOWNSTREAM
τ (F τ ;θτ

ds), (3)

where WS(·) represents the weighted sum function, θτ
w =

[wτ
1 , ..., w

τ
N ] are the weights for latent representations ob-

tained from each layer, which are learnable parameters, and
l̂τ is the estimation result attained by the downstream model.
DOWNSTREAMτ (·) denotes the downstream model for the task
τ whose learnable parameters are θτ

ds. The learnable parame-
ters (θτ

w,θ
τ
ds) are jointly optimized by using task-specific paired

data (lτ , l̂τ ), while the upstream model θssl is frozen.

Figure 1: Overview of the proposed SSL-MSE loss.

2.3. Speech Enhancement and SSL pipeline

Speech enhancement is a method to suppress undesired audio
from the input noisy observations. We denote the SE process as
follows: x̂ = SE(y;θse), (4)

where y ∈ RT and x̂ ∈ RT denote the noisy observations
and enhanced signals, respectively. θse denotes the learnable
parameters of the SE model, which is optimized by minimiz-
ing the distance between enhanced signal x̂ and the ground
truth clean source x ∈ RT . Specifically, we adopt the scale-
dependent signal-to-noise ratio loss LSNR(·) as the distance
measure, which is defined as follows:

LSNR = 10 log10
∥x̂∥2

∥x− x̂∥2 . (5)

Since the clean source is not available for real-recorded noisy
speech, simulated mixtures of clean source x and noise are
commonly used as noisy speech y in SE training. The entire
SE and SSL pipeline for downstream task τ can be written as
follows:

l̂τ = DOWNSTREAM
τ (WS(SSL(SE(y;θse);θssl);θ

τ
w);θ

τ
ds). (6)

It is commonly known that the mismatch between SE fron-
tend and backends can degrade the performance of backend
tasks when the SE frontend is trained separately from backends,
using the SE training criterion [23–25]. For the SE, SSL, and
ASR pipeline, this mismatch was mitigated by using the down-
stream ASR loss in jointly retraining SE and downstream mod-
els [16, 17]. However, this method may not be feasible when
considering application for more than a few downstream tasks,
because the retraining of the SE model for every downstream
task is computationally demanding as the SE model tend to have
many more learnable parameters than those of the downstream
models to maintain the enhancement performance. Moreover,
the fine-tuning on the downstream task makes the SE frontend
task-dependent, which makes it infeasible to share a single gen-
eral SE model for multiple downstream tasks.

3. Proposed Method
To obtain the downstream task-agnostic SE frontend while re-
ducing the mismatch, we propose SSL-MSE. Figure 1 shows
the general framework of the proposed SSL-MSE training. In
addition to the conventional signal-to-noise ratio (SNR) loss,
we calculate SSL-MSE which drives the enhanced signal closer
to the clean source in the SSL feature domain. Formally, SSL-
MSE LSSL-MSE between enhanced speech x̂ = SE(y;θse) and
clean source x is calculated as the mean square error between
SSL features extracted from these signals as follows:

LSSL-MSE = ∥F enh − F
clean∥2F /DT ′, (7)

F
enh

=
N∑

n=1

w̃nF
enh
n , F

clean
=

N∑

n=1

w̃nF
clean
n , (8)

F enh
1:N = SSL(SE(y;θse);θssl), F clean

1:N = SSL(x;θssl), (9)
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where ∥·∥F represents Frobenius norm and w̃ = [w̃1, ..., w̃N ]
represents the layer weight for the latent feature obtained from
each layer of the SSL model. The layer weight is a hyperpa-
rameter that controls which layer output SSL-MSE focuses on.
We tested three types of weighting: 1) last uses only the last
layer output, 2) all weighs every layer equally, and 3) latter-half
weights uniformly over the latter half layers. The model param-
eter θse is optimized by minimizing the multitask loss function
L expressed as follow:

L = LSSL-MSE + αLSNR, (10)

where α denotes the multitask weight for the SNR loss [26]. We
hereafter refer to the hyperparameter α as SNR weight. Note
that the parameters of the SSL model θssl are frozen while the
SSL-MSE training.

We adopted WavLM [13] as a SSL model to calculate SSL-
MSE loss. Note that SSL-MSE training does not depend on the
downstream tasks, only on the SSL model. How the SSL-MSE
training generalizes over other types of SSL models than that
used for SSL-MSE training is discussed in Section 4.2.1.

4. Experiments
4.1. Experimental setup

4.1.1. Speech enhancement frontend

The SE model was trained on simulated mixtures of speech and
noise data. We used LibriSpeech [27] for speech recordings
and DNS noise [22] for noise recordings. The number of noisy
observations were 100,000 and 5,000 for the training and devel-
opment sets, respectively. The noise was added at SNR values
randomly sampled from -3 to 20 dB. We chose DNS noise to
create a fair comparison of the SSL pipeline with/without the
SE module, as DNS noise is also used in training the WavLM
models. We adopted ConvTasnet as the SE front-end mod-
ule, which converts noisy raw-waveform audio into enhanced
raw-waveforms in a time-domain, end-to-end processing man-
ner [28]. According to the setup adopted in [29], we set the
hyperparameters to N=4096, L=320, B=256, R=4, X=8,
H=512 and P=3 following the notation in [28]. The SSL-MSE
loss was introduced after pre-training the model with conven-
tional SNR loss to speed up the conversion. The initial learning
rate for the pre-training with SNR loss was set to 5e-4 and was
multiplied by 3/4 if the loss on the development set did not de-
crease for 2 epochs. For optimization, we adopted the Adam
optimizer [30]. The models were pre-trained for 100 epochs.

4.1.2. SSL-MSE loss

To calculate SSL-MSE, we used off-the-shelf WavLM BASE+
model. We tested three configuration of layer weight w̃: last,
all, and latter-half as defined in Section 3. We used the last
setup unless otherwise specified. We tested the SNR weight α
within {0, 0.0001, 0.001, 0.01, 0.1, 1}. We adopted 0.1 unless
otherwise specified, which is the smallest value where SNR loss
on development set did not degrade compared with that of con-
ventional SNR loss training. We fine-tuned the SE model using
SSL-MSE loss with the initial learning rate of 1e-4 and for up
to 50 epochs.

4.1.3. SSL and downstream model

We implemented the SSL pipeline using the S3PRL toolkit [14,
31]. As the SSL model, we used the publicly available pre-
trained models of wav2vec 2.0 BASE, Hubert BASE, WavLM
BASE+, and WavLM LARGE without updating their parame-

ters. We tested two setups for downstream model training: 1)
official setup where downstream models were trained with SU-
PERB official training data that is relatively ‘clean’ speech data,
according to S3PRL SUPERB recipe [31], and 2) noise robust
setup where DNS noise was added to SUPERB official down-
stream training data at SNR values randomly sampled from -
3 to 20 dB. The results gained in the noise robust setup are
shown in Table 3; for the other experiments we adopt the of-
ficial setup. SE frontend was not applied while training the
downstream model in noise robust setup as well as in official
setup. The downstream models were prepared for each down-
stream task for each SSL model.

4.1.4. Evaluation details

In this work, we evaluate the SE model in terms of 1) speech en-
hancement performance and 2) the performance of downstream
tasks. SE performance was measured using the 3,000 simulated
noisy observations of Librispeech data and DNS noise at SNR
values randomly sampled from 0 to 10 dB. As the performance
measure, we adopted average value of the scale-independent
source-to-distortion ratio (SDR) [32] and perceptual evaluation
of speech quality (PESQ), as well as SSL-MSE values calcu-
lated on the features obtained from the last layer of the SSL
model. The performance of downstream tasks was evaluated
on a subset of the SUPERB benchmark. Namely, we chose
ASR, phone recognition (PR), automatic speaker verification
(ASV), intent classification (IC), and slot-filling (SF) tasks to
cover three major categories of tasks, i.e., content, speaker, and
semantics. ASR performance was measured on the test-clean
set and without the language model. To evaluate the noise ro-
bustness, we prepared a noisy version of the SUPERB test sets
for each task by adding DNS noise to the original recordings
at SNR values randomly sampled from 0 to 10 dB. Since DNS
noise contains a wide variety of the noise types and we use dif-
ferent samples for training and testing, we can verify robustness
to unseen noise although we adopted DNS noise in both training
and evaluation.

4.2. Experimental results

4.2.1. Performance comparison

Table 1 shows the performance of the SE model and the SSL
pipeline with the SE frontend. Compared with the results gained
from the clean test sets (a1), the addition of noise substantially
degrades the performance of SSL pipeline as shown in (a2).
Although WavLM BASE+ is trained robustly to DNS noise,
the baseline SE frontend still improves the downstream perfor-
mance in 4 out of 5 tasks (a3).

Column ‘SSL-MSE’ in the table indicates that by introduc-
ing the SE frontend trained with SSL-MSE (a4)-(a7), the output
features of the SSL model for noisy speech become closer to
those for clean speech compared with that of the baseline SE
frontend (a3). Accordingly, the proposed systems considerably
improved the performance of the downstream tasks compared
with the baseline. The system (a4)-(a6) show that SSL-MSE
training also slightly improved the SDR and PESQ compared
with the baseline when the SNR weight of SSL-MSE training is
set as 0.1. The system trained only with SSL-MSE loss (a7)
shows the best performance in three out of five downstream
tasks, while SDR and PESQ largely drop compared with sys-
tem (a4)-(a6). This indicate that there is a tradeoff between
SE performance and the compatibility with the SSL models,
which we further discuss about in Section 4.2.2. As for the
layer weight for the SSL-MSE, the latter-half setup shows su-
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Table 1: The performance of each system evaluated by SE performance and downstream performance with WavLM Base+. For the
downstream performance, row (a1) shows the result for official SUPERB eval sets and (a2)-(a7) for noisy eval sets. (a2) is the result of
noisy speech without front-end processing. (a3) indicates performance with conventional SE model and (a4)-(a7) indicate that with SE
trained with proposed SSL-MSE. Column ‘SSL-MSE’ shows the distance between enhanced or noisy speech and clean source measured
on the SSL feature obtained from the last layer. SSL-MSE and the SE performance are evaluated on simulated noisy observation of
Librispeech and DNS noise.

Test
set

SE
frontend

SSL
MSE
Loss

Layer
weight
w̃

SNR
weight

α

Downstream SSL
MSE

Speech
EnhancementASR PR ASV IC SF

WER↓ PER↓ EER↓ Acc↑ F1↑ MSE↓ SDR↑ PESQ↑
(a1) clean 5.6 4.4 4.5 98.8 90.3 - - -
(a2) noisy 17.1 16.0 10.9 67.4 82.4 0.0199 3.7 1.27
(a3) noisy ✓ No 14.6 9.9 8.6 84.8 82.4 0.0122 15.7 2.27
(a4) noisy ✓ Yes last 0.1 13.1 8.8 8.0 87.6 83.5 0.0105 15.8 2.34
(a5) noisy ✓ Yes all 0.1 13.5 9.0 8.0 87.3 83.1 0.0106 15.8 2.35
(a6) noisy ✓ Yes latter-half 0.1 12.9 8.7 7.9 87.8 83.4 0.0103 15.8 2.35
(a7) noisy ✓ Yes last 0 11.2 7.3 8.4 87.7 84.9 0.0093 8.0 1.38

Table 2: The performance with SSL models other than that used
for SSL-MSE training. ‘-’ in SE column means the performance
without SE, ‘baseline’ is a condition with the SE trained on SNR
loss, and ‘+SSL-MSE’ is the SE trained with SSL-MSE calcu-
lated on the last output of WavLM Base+ at SNR weight of 0.1.

SSL SE
SSL
MSE

Downstream
ASR ASV IC

MSE↓ WER↓ EER↓ Acc↑
(b2) w2v 2.0 - 0.1217 36.8 19.0 41.0
(b3) w2v 2.0 baseline 0.0450 18.8 12.2 70.9
(b4) w2v 2.0 +SSLMSE 0.0428 17.5 11.3 71.3
(c2) HuBERT - 0.1207 31.7 15.5 57.8
(c3) HuBERT baseline 0.0696 18.5 10.6 81.9
(c4) HuBERT +SSLMSE 0.0628 16.9 9.7 82.6
(d2) WavLM L - 0.0281 9.9 9.8 52.1
(d3) WavLM L baseline 0.0154 7.8 9.8 86.6
(d4) WavLM L +SSLMSE 0.0138 7.2 9.3 88.3

Table 3: The performance for noise-robust downstream models.
WavLM Base+ is used to obtain the result. (a2) in this figure
corresponds to system (a2) in Table 1.

Noise
robust

downstream
SE

Downstream
ASR ASV IC

WER↓ EER↓ Acc↑
(a2) - 17.1 10.9 67.4
(e2) ✓ - 13.6 9.2 79.4
(e3) ✓ baseline 12.5 7.9 85.8
(e4) ✓ +SSLMSE 11.3 7.7 88.3

perior performance on average (a6). Summarizing these results,
the proposed SSL-MSE can successfully train the downstream
task-agnostic SE model that improves the noise robustness of
the SSL pipeline while maintaining the SE performance itself.

Table 2 shows the performance for SSL pipelines with SSL
models other than WavLM BASE+ which is used for SSL-MSE
training. The results show that SSL-MSE improves the perfor-
mance of the SSL pipeline even for the mismatched SSL models
that are unseen during training, compared with the baseline SE
training. Thus, it can be said that SSL-MSE training potentially
generalizes over different types of SSL models.

Table 3 shows the performance of SSL pipelines when the
downstream models are also trained to be robust to noise. As
seen by comparing (a2) to (e2), the noise-robust training of
the downstream model is effective for the noise-robust WavLM
model. Row (e3) shows that the SE frontend is effective even
with the noise-robust SSL model and downstream models. Fur-
thermore, introducing the proposed SSL-MSE training (e4),
achieves an additional performance improvement. This result
indicates that SSL-MSE and the noise robust training of SSL
model and downstream models are complementary and can be
combined to obtain superior performance.

Figure 2: The tradeoff between enhancement and downstream
ASR performance as a function of SNR loss weight. The results
for WavLM Base+ and Wav2vec 2.0 are shown.

4.2.2. Further discussion about the effect of SSL-MSE

To further understand the effect of the combination of SNR loss
and SSL-MSE, we measured the SE and downstream ASR per-
formance obtained with SE models trained with different SNR
weights α. Figure 2 shows that the downstream ASR perfor-
mance with the WavLM BASE+ model, shown by the red solid
line, increases as SSL-MSE becomes even more dominant than
SNR loss, while the performance of SE, shown by the blue solid
line, decreases when SNR loss weight is less than 0.1. This indi-
cates that SNR and SSL-MSE metrics requires different modes
of enhancement and thus they are in a tradeoff relationship to
some extent. The red dotted line plots the downstream ASR
performance with Wav2vec 2.0 model. With a SSL model mis-
matched with that used for SSL-MSE calculation, the down-
stream performance decreases when SSL-MSE loss becomes
significantly stronger than SNR loss. It seems that the SNR
objective works as a regularization term and is required to main-
tain the generalizability of the SE model over different types of
SSL models.

5. Conclusion
To construct an SE model that can effectively be combined with
SSL models with less mismatch, we proposed SSL-MSE, which
is a minimization criterion involving enhanced signals and clean
sources in the SSL feature domain. The SE model trained with
a multi-task loss including SSL-MSE is shown to improve the
performance of downstream tasks in the combination with SSL
models while retaining the SE performance itself. In addition to
the downstream task-agnostic nature of the proposed method, it
is shown that SSL-MSE can generalize over different types of
SSL models.
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