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Abstract 
A system that automatically detects voice pathology from 
acoustic signals enables non-invasive, low cost, and objective 
assessment of speech disorders. Therefore, it is expected to 
accelerate and improve the diagnosis and clinical treatment of 
patients. Pathological voices are symptoms of impairments in 
the articulation of speech sound, fluency, and/or voice. We 
consider that direct extraction of features from the glottal flow 
estimated by glottal inverse filtering (GIF) is a promising 
approach to pathological-voice detection. To precisely 
estimate the glottal flow, we propose a novel GIF method that 
combines constrained autoregressive hidden Markov model 
(CAR–HMM) analysis with automatic topology generation of 
the excitation HMM. To evaluate the effectiveness of the 
features extracted from the estimated glottal flow during 
pathological-voice detection, we employ the Saarbrücken 
Voice Database. We also compare the features obtained by the 
proposed CAR–HMM with those obtained by pre-trained 
models based on self-supervised learning (SSL). The 
experimental results confirmed that the CAR–HMM-based 
method can outperform the SSL-based methods. 
Index Terms: pathology voice, glottal flow, auto-regressive 
hidden Markov model, self-supervised learning 

1. Introduction 
Speech conveys rich information including not only linguistic 
content but also the identity, gender, age, emotions, and health 
state of the speaker. Recently, systems that automatically 
detect voice pathology from acoustic signals have attracted 
much interest [2,3]. Especially, by providing non-invasive, 
low cost, objective assessments of disorders, they are expected 
to accelerate and improve the diagnosis and clinical treatment 
of patients [1]. 

Speech production requires the cooperation of multiple 
organs: (1) the nervous system, (2) respiratory system, and (3) 
the vocal cords and vocal tracts [7]. Speech disorders result 
from infectious, physiological, or psychogenic disruptions to 
any of these systems. Professionals who use their voice 
excessively at work, such as singers and teachers, are 
especially vulnerable to such disruptions [8,9]. Pathological 
voices are symptoms of impaired articulation of speech sound, 
fluency, and/or voice [10]. Therefore, by separately extracting 
the vocal cord- and vocal tract-related acoustical features from 
speech signals, we should provide important data for the 
acoustical assessment and identification of speech disorders. 
Although methods for estimating and parameterizing the vocal 
tract system are well established, methods for estimating the 
glottal flow generated by the vibrations of vocal cords appear 
to be under-investigated [11]. The effectiveness of glottal 
flow-related features in the analysis and detection of voice 
pathologies has only recently been reported [4,5,12,13]. 

Methods that estimate the glottal flow from voiced speech 
signals are referred to as glottal inverse filtering (GIF) 
methods. Speech signals can be measured only as an output of 
a composite system including the glottal flow, vocal tract, and 
lip radiation. As the glottal flow cannot be directly measured 
from speech signals using non-invasive measuring techniques, 
we cannot easily acquire the ground truth of glottal flow 
signals corresponding to the acquired speech signals; 
moreover, GIF is hardly realized through supervised deep 
learning. Several GIF methods have been handcrafted based 
on speech-signal-analyses and knowledge of the speech 
production mechanism [15, 16, 17, 18].  

To improve the estimation accuracy of vocal-tract 
characteristics, Sasou et al. [19,20] proposed a speech analysis 
method based on an autoregressive hidden Markov model 
(AR–HMM), which is especially effective on high 
fundamental-frequency speech signals. The HMM was 
introduced as an excitation-source model and the states were 
concatenated in a ring topology to circulate the state transition, 
representing the periodicity of voiced speech. However, the 
prediction residual obtained from inverse filtering through a 
learned AR filter, and the learned HMM to which the 
generated prediction-residual conforms, might lack sufficient 
information related to a physically observable signal. For this 
reason, AR–HMM-based analysis is not directly usable as a 
GIF method. To address this problem, Sasou [14] recently 
proposed a constrained AR–HMM (CAR–HMM) analysis that 
directly models the glottal flow derivative under constraints on 
the AR filter estimation, where the HMM of a ring topology is 
adopted. When applying CAR–HMM to the analysis of 
pathological voices, particularly those caused by vocal-cord 
disorders, the ring-topology assumption of the HMM might 
need to be relaxed to emphasize the irregularities in glottal 
flow. Previously, Sasou [21,34] proposed a successive state 
splitting (SSS) method that can automatically generate the 
topology of the excitation-source HMM for the AR–HMM-
based speech analysis method.  

In the present paper, we propose a novel GIF method that 
combines CAR–HMM with automatic topology generation of 
the excitation-source HMM. This approach is expected to 
more precisely estimate the glottal flow than CAR–HMM with 
a ring topology. We evaluate the effectiveness of the features 
extracted from the estimated glottal flow during pathology 
voice detection. Meanwhile, self-supervised learning (SSL) 
promises to realize a single universal model for a wide variety 
of tasks and domains [22]. SSL is classified as an 
unsupervised learning approach because it attempts to 
discover the naturally occurring patterns in training samples, 
which cannot be preassigned with labels or scores [23]. We 
also compare the proposed CAR–HMM-derived features with 
those obtained using pre-trained SSL-based models [24]. 
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2. Proposed GIF method 

2.1. Parameter estimation algorithm for CAR–HMM 

This subsection briefly reviews the iterative parameter 
estimation (IPE) algorithm of CAR–HMM (see [14] for 
details). In the following derivation, P denotes the order of the 
vocal-tract AR filter and 𝑎𝑎𝑘𝑘

(𝑖𝑖) (𝑘𝑘 = 1,⋯ ,𝑃𝑃)  denotes the AR 
coefficients obtained in the i-th iteration. The AR filter takes 
the following form: 

𝑉𝑉(𝑖𝑖)(𝑧𝑧) = 1
𝐴𝐴(𝑖𝑖)(𝑧𝑧) = 1

1−∑ 𝑎𝑎𝑘𝑘
(𝑖𝑖)𝑧𝑧𝑘𝑘𝑃𝑃

𝑘𝑘=1
                                    (1) 

where 𝐴𝐴(𝑖𝑖)(𝑧𝑧) denotes the inverse filter. The AR coefficient 
vector is denoted as 

𝐚𝐚(𝑖𝑖) = �𝑎𝑎1
(𝑖𝑖) 𝑎𝑎2

(𝑖𝑖) ⋯ 𝑎𝑎𝑃𝑃
(𝑖𝑖)�

𝑇𝑇
∈ ℝ𝑃𝑃                         (2) 

Let N represent the number of speech-signal samples in the 
analysis frame. The speech-signal samples 𝑥𝑥𝑛𝑛(𝑛𝑛 = 𝑃𝑃,⋯ ,𝑁𝑁 −
1) can be described by the following vector: 

𝐱𝐱𝑃𝑃 = [𝑥𝑥𝑃𝑃 𝑥𝑥𝑃𝑃+1 ⋯ 𝑥𝑥𝑁𝑁−1]T ∈ ℝ𝑁𝑁−𝑃𝑃.                   (3)  
Let 𝛀𝛀 be the following matrix: 

𝛀𝛀 = [𝐱𝐱𝑃𝑃−1 𝐱𝐱𝑃𝑃−2 ⋯ 𝐱𝐱0] ∈ ℝ(𝑁𝑁−𝑃𝑃)×𝑃𝑃.                (4) 
The predicted residual samples �̃�𝑒𝑛𝑛

(𝑖𝑖), (𝑛𝑛 = 𝑃𝑃,⋯ ,𝑁𝑁 − 1) can be 
described by the following vector: 

𝐞𝐞�𝑃𝑃
(𝑖𝑖) = ��̃�𝑒𝑃𝑃

(𝑖𝑖) �̃�𝑒𝑃𝑃+1
(𝑖𝑖) ⋯ �̃�𝑒𝑁𝑁−1

(𝑖𝑖) �
T
∈ ℝ𝑁𝑁−𝑃𝑃.                (5) 

The random variables 𝑒𝑒𝑛𝑛 (𝑛𝑛 = 𝑃𝑃,⋯ ,𝑁𝑁 − 1)  in the glottal 
flow derivative are assembled into the following vector: 

𝐞𝐞𝑃𝑃 = [𝑒𝑒𝑃𝑃 𝑒𝑒𝑃𝑃+1 ⋯ 𝑒𝑒𝑁𝑁−1]T ∈ ℝ𝑁𝑁−𝑃𝑃.                   (6)  
This random vector of the glottal flow derivative is assumed to 
follow a multidimensional normal distribution: 

 𝐞𝐞𝑃𝑃~N �𝐦𝐦𝑃𝑃
(𝑖𝑖),𝚺𝚺𝑃𝑃

(𝑖𝑖)�,                                                     (7)                                                                             
where the i-th estimates of the expectation vector and the 
covariance matrix are respectively given by 

𝐦𝐦𝑃𝑃
(𝑖𝑖) = �𝑚𝑚𝑃𝑃

(𝑖𝑖) 𝑚𝑚𝑃𝑃+1
(𝑖𝑖) ⋯ 𝑚𝑚𝑁𝑁−1

(𝑖𝑖) �
𝑇𝑇
∈ ℝ𝑁𝑁−𝑃𝑃,          (8)  

𝚺𝚺𝑃𝑃
(𝑖𝑖) = diag �𝑣𝑣𝑃𝑃

(𝑖𝑖), 𝑣𝑣𝑃𝑃+1
(𝑖𝑖) ,⋯ , 𝑣𝑣𝑁𝑁−1

(𝑖𝑖) � ∈ ℝ(𝑁𝑁−𝑃𝑃)×(𝑁𝑁−𝑃𝑃).  (9) 

The IPE algorithm is executed as follows: 
[IPE-Step 1] Set the initial population parameters of the 
glottal flow derivative random vector to the following values: 

𝐦𝐦𝑃𝑃
(0) = 𝟎𝟎,                                                                  (10) 

𝚺𝚺𝑃𝑃
(0) = diag �𝑣𝑣𝑃𝑃

(0), 𝑣𝑣𝑃𝑃+1
(0) ,⋯ , 𝑣𝑣𝑁𝑁−1

(0) �.                           (11) 
Here, the variances are initially set to positive random values 
or unity. The next step begins with i = 0. 
[IPE-Step 2] Adjust the AR coefficients such that the 
prediction-residual vector becomes the realization vector of 
the glottal flow derivative random vector conforming to 
N �𝐦𝐦𝑃𝑃

(𝑖𝑖),𝚺𝚺𝑃𝑃
(𝑖𝑖)�  and the gains of the inverse filter are 

constrained as specified. The constraints on the DC and 
Nyquist frequency gains are given by: 

𝐴𝐴(𝑖𝑖)�𝑒𝑒𝑗𝑗0� = 1 − ∑ 𝑎𝑎𝑘𝑘
(𝑖𝑖)𝑃𝑃

𝑘𝑘=1 = 1 − 𝐜𝐜T𝐚𝐚(𝑖𝑖) = 𝑙𝑙𝑑𝑑𝑑𝑑, 
𝐜𝐜 = [1 1 ⋯ 1]T ∈ ℝ𝑃𝑃,  
𝐴𝐴(𝑖𝑖)�𝑒𝑒𝑗𝑗𝑗𝑗� = 1 −∑ (−1)𝑘𝑘𝑎𝑎𝑘𝑘

(𝑖𝑖)𝑃𝑃
𝑘𝑘=1 = 1 − 𝐝𝐝T𝐚𝐚(𝑖𝑖) = 𝑙𝑙𝑛𝑛𝑛𝑛, 

𝐝𝐝 = [(−1)1 (−1)2 ⋯ (−1)𝑃𝑃]T ∈ ℝ𝑃𝑃.              (12) 
We must now solve the following optimization problem: 

𝐚𝐚(𝑖𝑖+1) = argmax
𝐚𝐚

 L �𝐞𝐞�𝑃𝑃(𝐚𝐚);𝐦𝐦𝑃𝑃
(𝑖𝑖),𝚺𝚺𝑃𝑃

(𝑖𝑖)�, 
subject to 1 − 𝐜𝐜T𝐚𝐚 = 𝑙𝑙𝑑𝑑𝑑𝑑 and 1− 𝐝𝐝T𝐚𝐚 = 𝑙𝑙𝑛𝑛𝑛𝑛,                    (13) 
Here, the prediction-residual vector is a function of the AR 
coefficient vector as 

𝐞𝐞�𝑃𝑃(𝐚𝐚) = 𝐱𝐱𝑃𝑃 − 𝛀𝛀𝐚𝐚.                                                     (14) 

The solution that maximizes the objective function is given as 
follows, where (i) is omitted to simplify the notations: 

𝐚𝐚(𝑖𝑖+1) = 𝐚𝐚0 − 𝜆𝜆𝐆𝐆𝐜𝐜 − 𝛾𝛾𝐆𝐆𝐝𝐝,  
𝐚𝐚0 = [𝛀𝛀T𝚺𝚺𝑃𝑃−1𝛀𝛀]−1𝛀𝛀T𝚺𝚺𝑃𝑃−1(𝐱𝐱𝑃𝑃 −𝐦𝐦𝑃𝑃),  
𝐆𝐆 = (𝛀𝛀T𝚺𝚺𝑃𝑃−1𝛀𝛀)−1,  

�𝜆𝜆𝛾𝛾� = 1
(𝐜𝐜T𝐆𝐆𝐜𝐜)(𝐝𝐝T𝐆𝐆𝐝𝐝)−(𝐜𝐜T𝐆𝐆𝐝𝐝)(𝐝𝐝T𝐆𝐆𝐜𝐜) ×

� 𝐝𝐝
T𝐆𝐆𝐝𝐝 −𝐜𝐜T𝐆𝐆𝐝𝐝

−𝐝𝐝T𝐆𝐆𝐜𝐜 𝐜𝐜T𝐆𝐆𝐜𝐜
� �
𝐜𝐜T𝐚𝐚0 + 𝑙𝑙𝑑𝑑𝑑𝑑 − 1
𝐝𝐝T𝐚𝐚0 + 𝑙𝑙𝑛𝑛𝑛𝑛 − 1�.                       (15) 

Using (14), the prediction-residual vector is updated as 
𝐞𝐞�𝑃𝑃

(𝑖𝑖+1) = 𝐱𝐱𝑃𝑃 − 𝛀𝛀𝐚𝐚(𝑖𝑖+1).                                               (16) 
[IPE-Step 3] Check the convergence status. If the 
following inequality is satisfied for small 𝜀𝜀 , or if the 
number of iterations reaches the pre-specified value, the 
iterations are terminated: 

�log�L�𝐞𝐞�𝑃𝑃
(𝑖𝑖+1);𝐦𝐦𝑃𝑃

(𝑖𝑖),𝚺𝚺𝑃𝑃
(𝑖𝑖)��−log�L�𝐞𝐞�𝑃𝑃

(𝑖𝑖);𝐦𝐦𝑃𝑃
(𝑖𝑖),𝚺𝚺𝑃𝑃

(𝑖𝑖)���

�log�L�𝐞𝐞�𝑃𝑃
(𝑖𝑖);𝐦𝐦𝑃𝑃

(𝑖𝑖),𝚺𝚺𝑃𝑃
(𝑖𝑖)���

< 𝜀𝜀.               (17) 

Otherwise, proceed to IPE-Step 4. 
[IPE-Step 4] Update the population parameters of the glottal- 
flow-derivative random vector by maximizing the likelihood 
as follows: 

𝐦𝐦𝑃𝑃
(𝑖𝑖+1),𝚺𝚺𝑃𝑃

(𝑖𝑖+1) = arg max
𝐦𝐦P,𝚺𝚺P

 L �𝐞𝐞�𝑃𝑃
(𝑖𝑖+1);𝐦𝐦𝑃𝑃,𝚺𝚺𝑃𝑃�,           (18) 

where the updated prediction-residual vector is regarded as the 
newly realized random vector of the glottal flow derivative. 
The likelihood can be maximized through the following 
procedure. The HMM has S states, each with a unique number 
assigned from 𝕊𝕊 = {1,⋯ , 𝑆𝑆}. The HMM is learned using the 
updated prediction-residual time sequence of the Baum–
Welch algorithm, which obtains the population parameters 
𝜇𝜇𝑠𝑠

(𝑖𝑖+1) and 𝜎𝜎𝑠𝑠
2,(𝑖𝑖+1) (𝑠𝑠 ∈ 𝕊𝕊)  of each output PDF. The Viterbi 

algorithm then finds the most likely state-transition sequence 
𝑠𝑠𝑛𝑛

(𝑖𝑖+1) ∈ 𝕊𝕊 (𝑛𝑛 = 𝑃𝑃,⋯ ,𝑁𝑁 − 1) corresponding to the prediction-
residual time sequence. The random variable 𝑒𝑒𝑛𝑛 of the glottal 
flow derivative is assumed to conform to the following 
population parameters: expectation 𝑚𝑚𝑛𝑛

(𝑖𝑖+1) = 𝜇𝜇𝑠𝑠𝑛𝑛
(𝑖𝑖+1)  and 

variance 𝑣𝑣𝑛𝑛
(𝑖𝑖+1) = 𝜎𝜎𝑠𝑠𝑛𝑛

2,(𝑖𝑖+1) , where (𝑖𝑖 + 1)  is omitted from 
𝑠𝑠𝑛𝑛

(𝑖𝑖+1). The updated population parameters can be respectively 
described in vector and matrix forms as 

𝐦𝐦𝑃𝑃
(𝑖𝑖+1) = �𝑚𝑚𝑃𝑃

(𝑖𝑖+1) 𝑚𝑚𝑃𝑃+1
(𝑖𝑖+1) ⋯ 𝑚𝑚𝑁𝑁−1

(𝑖𝑖+1)�
𝑇𝑇
,              (19)  

𝚺𝚺𝑃𝑃
(𝑖𝑖+1) = diag �𝑣𝑣𝑃𝑃

(𝑖𝑖+1), 𝑣𝑣𝑃𝑃+1
(𝑖𝑖+1),⋯ , 𝑣𝑣𝑁𝑁−1

(𝑖𝑖+1)�.                  (20) 
 

After setting i to i+1, the procedure returns to IPE-Step 2 and 
begins the next iteration. 

2.2. CAR–HMM combined with successive state splitting  

The SSS algorithm was originally proposed for optimizing a 
network of HMM states to an individual speaker [25] and was 
later expanded to the MDL–SSS algorithm, which conducts 
both contextual and temporal splitting with the MDL criteria 
as the splitting and stop criteria [26]. Applying MDL–SSS, we 
automatically generated the topology of the excitation-source 
HMM for AR–HMM-based speech analysis [21]. In the 
present paper, we combine the parameter estimation algorithm 
of CAR–HMM with MDL–SSS for precise modeling of the 
glottal flow derivative.  

The algorithm first adopts a topology with a single state. 
In the following, 𝜙𝜙(𝑁𝑁𝑠𝑠) represents the AR–HMM parameter 
set comprising the AR coefficients and the parameters of the 
excitation-source HMM with 𝑁𝑁𝑠𝑠  states. The AR–HMM 
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parameters 𝜙𝜙(1)  are then estimated using the CAR–HMM 
parameter estimation algorithm. Next, the 𝜙𝜙(2) parameters are 
estimated with the two states concatenated in a ring state. 
These two models are compared under the MDL criterion. If 
the MDL of 𝜙𝜙(𝑁𝑁𝑠𝑠)  exceeds the MDL of 𝜙𝜙(𝑁𝑁𝑠𝑠 − 1) , then 
𝜙𝜙(𝑁𝑁𝑠𝑠 − 1) is selected as the final model and the state-splitting 
algorithm finishes. Otherwise, the likelihood of each state is 
evaluated as 

𝑙𝑙(𝑠𝑠) = ∏ 1

�2𝑗𝑗𝜎𝜎𝑠𝑠
2,(𝑖𝑖)

exp �−
��̃�𝑒𝑛𝑛

(𝑖𝑖)−𝜇𝜇𝑠𝑠
(𝑖𝑖)�

2

2𝜎𝜎𝑠𝑠
2,(𝑖𝑖) �

𝑛𝑛∈�𝑛𝑛�
𝑛𝑛 = 𝑃𝑃,⋯ ,𝑁𝑁 − 1

𝑠𝑠𝑛𝑛
(𝑖𝑖) = 𝑠𝑠 �

. (21) 

The minimum likelihood state selected by 𝑠𝑠∗ =
argmin𝑠𝑠∈𝕊𝕊𝑙𝑙(𝑠𝑠)  is then split in both the temporal and 
contextual directions, as depicted in Figure 1. Here 𝜙𝜙𝑡𝑡 and 𝜙𝜙𝑑𝑑 
represent the parameter sets of CAR–HMM split in the 
temporal and contextual directions, respectively. After 
evaluating the MDLs of both CAR–HMMs, the parameter set 
of the CAR–HMM with the lowest MDL is adopted as 
𝜙𝜙(𝑁𝑁𝑠𝑠 + 1) . These processes are iterated until the stop 
condition is satisfied. 

 
Figure 1: State splitting in the temporal and contextual 

directions. 

3. Experiments 

3.1. Database 

The following experiments were performed on the 
Saarbrücken  Voice Database (SVD) [27], which contains 
recordings of 1002 speakers with a wide range of voice 
disorders (454 male and 548 female). Each session contains 
the recordings of /a/, /i/, and /u/ vowels uttered with seven 
kinds of pitch patterns, along with short phrases. The SVD 
uses 71 different pathology labels. One thousand and ninety 
three pathological recording sessions are assigned a single 
label and 263 pathological recording sessions are assigned 
multiple labels [6]. We counted the number of appearance 
frequencies of each of the 71 labels and selected the 15 labels 
that appeared at least 30 times. In the following experiments, 
we used 1213 pathological recording sessions assigned one of 
the 15 labels along with 685 control recording sessions. To 
balance the number of female and male speakers' recordings, 
we first separated the recordings in each label class by gender. 
We then partitioned the recordings in the respective label class 
and respective gender class into training, validation, and test 
datasets at a ratio of 8:1:1. We combined the female and male 
speakers' recordings in the respective label class and the 
respective dataset to generate gender-balanced datasets. The 
experimental task was pathological-voice detection, where the 
vowel recordings were classified as either pathological or 
normal. For this purpose, we replaced all 15 labels of 
pathological vowel utterances with “pathology” and labeled all 
control vowels as “normal.” 

3.2. CAR–HMM-based feature extraction 

In the following experiments, we used the recordings of the /a/ 
vowel with normal pitch. The recordings in the SVD were 
digitized with sampling at 50 kHz and quantized with 16-bit 
resolution. The recordings were down-sampled to 16 kHz. The 
vowel sounds were pre-emphasized through a high-pass filter 
(1 − 0.99𝑧𝑧−1) and framed with a frame length and shift period 
of 200 ms and 100 ms, respectively. Applying the CAR–
HMM with SSS to each frame, we estimated the glottal flow 
derivative setting the order of the AR filter to 16, the 
maximum number of successively split states to 5, the number 
of iterations in the IPE algorithm to 20, and the constraints on 
both gains to 𝑙𝑙𝑑𝑑𝑑𝑑 = 𝑙𝑙𝑛𝑛𝑛𝑛 = 1 in (12). The frame number of the 
glottal flow derivatives that were estimated by the CAR-HMM 
from one recording of the vowel sound depends on the length 
of the recording.  

Next, we extracted the features of the Mel Filter Bank 
(MelFB) from the respective frames of the glottal flow 
derivative. After pre-emphasizing the respective frame of the 
glottal flow derivative through a high-pass filter ( 1 −
0.97𝑧𝑧−1 ), we calculated the fast Fourier transforms (FFTs) 
using analysis frames with a length and shift period of 10 ms 
and 1.25 ms, respectively. Triangular windows were applied to 
the FFT amplitudes to generate 40-dimensional MelFBs. From 
the respective frame of the glottal flow derivative, we obtained 
153 MelFBs. 

3.3. Transformers for CAR–HMM-based features 

We employed a standard Transformer encoder composed of a 
stack of identical layers followed by a classification head and 
a SoftMax layer. Each layer of Transformer has two sub-
layers: a multi-head self-attention mechanism and a simple, 
position-wise, fully connected feed-forward network [28]. The 
153-long input sequence of MelFBs extracted from each frame 
was directly fed to the first layer of the Transformer with no 
positional embeddings. Our preliminary experimental results 
indicated that adding positional embeddings to MelFBs 
degraded the recognition accuracy. To ensure that 
Transformer could output a prediction for every MelFB in the 
input sequence, every vector in the output sequence was 
independently fed to the classification head. We then 
aggregated the predictions of all MelFBs extracted from one 
recording. The final decision (whether the recording belongs 
to the “pathology” or “normal” class) was determined with 
simple max-voting. 

We implemented twelve Transformers with different 
model structures and training conditions. For each 
Transformer, Table 1 lists the number of layers, number of 
multi-headers in the self-attention mechanism, number of 
nodes in the hidden layer of the feed-forward network, and the 
structure of the classification head. During training, a residual 
dropout with a rate of 0.5 was applied to the output of each 
Transformer sub-layer. The batch size was set to 8, 16, or 32 
depending on the memory consumption of the GPU. The 
maximum epoch number was set to 2000. In each training 
epoch, Transformer was evaluated on the validation dataset. 
After iterating 2000 epochs, we selected the best-scoring 
model as the optimal model. For optimization, we employed 
the Adam optimizer [29] with a learning ratio of 1e-5 or 1e-4. 
Each Transformer was iteratively trained ten times under the 
same conditions using different random seeds. 
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Table 1: Conditions of the Transformers used in the 
experiments 

  

3.4. Self-supervised learning-based method 

The performance of CAR–HMM in pathological-voice 
detection was compared with those of pre-trained models with 
different SSLs as acoustic-feature extractors. As the SSLs, we 
employed the modified Contrastive Predictive Coding (CPC) 
[30], wav2vec2.0 Large [31], and the hidden-unit BERT 
(HuBERT) Large [32]. The feature dimensions of the 
modified CPC, wav2vec.20 Large, and HuBERT Large are 
256, 1024, and 1024, respectively. 

Figure 2 shows the model for classifying the SSL-based 
features. Originally proposed in [33] for speech-emotion 
recognition, the model consists of one Transformer block and 
two convolution blocks combined in parallel. Both 
convolution blocks have the same structure, as represented in 
the lower part of Figure 2. In the following, we describe only 
the optimal model of the respective SSL among all examined 
models. Although the sequence length of the extracted features 
depended on the recording length of the vowel sound, the 
length of the input-feature sequences was fixed at 512. If the 
extracted feature sequence was longer than 512, it was 
truncated to the first 512 features. In contrast, if the feature 
sequence was shorter than 512, its length was extended by 
iteratively concatenating the original feature sequence. Like 
the Transformer used for CAR–HMM-based feature extraction, 
the Transformer block included only an encoder part. The 
number of encoder layers was set to one. The number of 
multi-headers of the self-attention mechanism was also set to 
one. The number of nodes in the hidden layer of the feed-
forward network was set to 1024 for the modified CPC and 
2048 for wav2vec.20 Large and HuBERT Large. The batch 
size was set to 16. In each training epoch, the Transformer was 
evaluated on the validation dataset. The best-scoring model 
was selected as the optimal model. For optimization, we used 
the Adam optimizer with a learning ratio of 1e-4. The parallel 
model was iteratively trained ten times under the same 
conditions for each SSL using different random seeds. 

3.5. Results 

The identification results on the validation and test datasets 
were evaluated in terms of their F1-scores. Tables 2 and 3 
present the F1-scores of the CAR–HMM- and SSL-based 
methods, respectively. In each table, the maximum F1-score 
on each dataset is highlighted in bold type. On the validation 
dataset, the F1-scores of the SSL-based methods exceed those 
of the CAR–HMM-based methods; however, on the test 
dataset, the CAR–HMM-based methods tend to outperform 
the SSL-based methods. Therefore, the generalization ability 
of the CAR–HMM-based methods appear to be superior to the 
SSL-based methods. On both the validation and test datasets, 

the F1-scores of the CAR–HMM-based method were 
maximized in Model 10 (which achieved 75.15% and 75.27% 
on the validation and test datasets, respectively). Meanwhile, 
the SSL-based method achieved its maximum F1-scores with 
the modified CPC SSL (78.99% and 74.21% on the validation 
and test datasets, respectively). Comparing the F1-scores of 
the test dataset, we can conclude that the CAR–HMM-based 
method is more promising than the SSL-based method. 
 

 
Figure 2: Classification model for SSL-based features 

(d represents the dimension of the features). 

Table 2: Results of the CAR–HMM-based methods. 

 
 

Table 3: Results of the SSL-based methods. 

 

4. Conclusions 
We proposed a novel GIF method that combines CAR–HMM 
with automatic topology generation of the excitation-source 
HMM. The features obtained from the glottal flow derivative 
with the proposed GIF method were applied to pathological-
voice detection. Comparison experiments showed that the 
CAR–HMM-based methods outperformed the SSL-based 
methods. Judging from these experimental results, the 
proposed GIF method is both valid and effective. One 
drawback of the proposed GIF method is the complicated 
algorithm, which is calculation-intensive and time-consuming. 
We are now planning a surrogate model of the proposed GIF 
method. 
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