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Abstract
End-to-End Transformer-based models are the most popular

approach for Spoken Language Translation (SLT). While obtain-
ing state-of-the-art results, we are still far from understanding
how these models extract acoustic information from the data and
how they are transformed into semantic representations.

In this paper, we seek to provide a better understanding of
the flow of acoustic information along speech-to-text translation
models. By means of the Speaker Classification and Spectrogram
Reconstruction tasks, this study (i) interprets the main role of
the encoder with respect to the acoustic features, (ii) highlights
the importance of the acoustic information throughout the model
and its transfer between encoder and decoder, and (iii) reveals
the significant effect of downsampling convolutional layers for
learning acoustic features. (iv) Finally, we also observe the
existence of a strong correlation between the semantic domain
and the speakers’ labels in MuST-C.
Index Terms: Spoken Language Translation, Interpretability of
Acoustic information.

1. Introduction
In recent years, end-to-end Spoken Language Translation (SLT)
models have gained popularity in the research community [1].
This trend was highly influenced by the release of Transformer
[2], as it revolutionized the MT field, also impacting speech
processing [3]. In contrast to text tasks, which deal with se-
quences of a discrete nature, speech signals are collected at a
digitalization frequency typically between 16-48KHz, resulting
in extremely long discrete waveforms. Most approaches use the
mel-spectogram of the signal to overcome the long sequences
problem. This results in smaller sequences with higher frequency
content. In addition, they further reduce the sequence length by
collapsing adjacent vectors in a fixed way [4, 5, 6] or by using
pretrained compression modules [7, 8, 9].

A common characteristict of end-to-end systems is that they
learn latent representations directly from raw data without any
specific feature engineering. Whereas the temporal dimension
of speech sequences has been studied extensively through in-
terpretability studies [10] or efficient transformer alternatives
[11, 12], the feature space, as well as the importance and benefit
of acoustic information in end-to-end models, have not been
practically explored [13].

Therefore, the contributions of this paper in the field of SLT
are:
• To provide an interpretation of how acoustic information is

processed throughout the training by the different components
of the model’s architecture.

0Work done by Gerard Sant at UPC.

• Analyze the importance of Convolutional layers on SLT per-
formance. We observe that these layers play an important role
in both subsampling and acoustic feature learning.

• Highlight the bias and effect of the domain in some of the
most used datasets in the SLT task.

2. Related Work
As mentioned, one of the main challenges in end-to-end SLT
is the large sequence length. [4] proposed the use of two one-
dimensional convolutional layers prior to the Transformer En-
coder over the temporal dimension to reduce the length of the
mel spectrogram. [12] observed the presence of temporal re-
dundancy and unnecessary computations throughout the encoder
layers. The temporal correlation of speech sequences was further
studied by [10], who observed the increasing importance of local
context throughout the transformer encoder layers.

A few feature engineering attempts have been made in the
Automatic Speech Recognition (ASR) task. For instance, [14]
proposed to aggregate speaker information along the encoder
layers via i-vectors. Similarly, [15] tried to reinforce the speaker
information in the Conformer Encoder [16] by computing the co-
sine similarity between the representation predicted by a speaker
classifier and the real speaker. However, only [13] performed
feature engineering based on the amount of speaker information
present in the conformer encoder. Specifically, they proposed (i)
to stimulate the speaker information at the beginning of the en-
coder layers minimizing the error of a speaker classifier and (ii)
reducing the speaker information in the last layers of the encoder
using gradient reversal [17] in the previous configuration.

3. Proposed Methodology

Figure 1: Proposed scheme to observe the flow of the speaker
information along the SLT Transformer. At the output of each
layer, a Speaker MLP classifier is trained with the labels pro-
vided by the dataset.
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3.1. Acoustic Information Tracking

The proposed scheme (Fig. 1) for measuring the information flow
along the encoder is built on top of the Speech-to-Text Trans-
former [6], which reduces the normalized mel-spectogram length
of the input waveform. Inspired by studies in Text-to-Speech
multispeaker [18], where the resulting speech is composed of the
text representation of the message (linguistic information) and
the prosody [19] of the speaker in question (acoustic informa-
tion), the speaker information will be used as the ground truth of
our measurement [13]. Therefore, we will train a speaker classi-
fier at the output of each layer of the model, whose accuracy will
provide a notion of the amount of acoustic information present
in the representation of its input.

In addition, by means of two 1D transposed convolutional
layers, we intend to reconstruct the input spectogram to corrobo-
rate the results obtained by the previous analysis.

3.2. Robustness of Acoustic Information

To perform SLT, the encoder must learn a transformation of
the data from an acoustic-based representation, such as a mel-
spectrogram, to a semantic representation required to condition
the textual translation’s generation. This experiment aims to
examine the significance of acoustic information at each layer of
the model by introducing a feed-forward (FFN) bottleneck in a
low-dimensional space. If a layer of the model does not require
certain acoustic features, the probing task will show a decrease in
performance that will persist throughout the network. However,
if performance improves in subsequent layers, it indicates that
the model is relearning some of the acoustic information and
that it remains pertinent to performing the task.

4. Experimental Details
Data. For our experiments we are using the English→German
(En-De) direction of (i) MuST-C [20], which is based on 408
hours of TED talks and (ii) CoVoST-21 [21], a large-scale multi-
lingual speech translation corpus covering translations from 21
languages into English.

The en-de MuST-C test split consists of a total of 2587 utter-
ances spoken by 27 speakers, which corresponds to 98.5 samples
per speaker. However, being the CoVoST-2 test partition larger
in both size and number of speakers, most speakers have only
one utterance. Therefore, a test split has been created with 27
speakers, each with between 98 and 99 samples, from the train
partition. The speakers of the new test split have been removed
from the train partition. In order to measure the impact of speech
domain on learned representation, we also generate a Synthetic
MuST-C test set using a Tacotron 2 [22] model trained on Lib-
rispeech [23]2, using the same speaker for all utterances, only
removing 38 utterances that where not adequately recognized
due to background noise.

Baseline. The small S2T-Transformer3 (S2T-Transformer-S)
has 12 encoder layers and 6 decoder layers, with a dimensionality
d = 256. Four heads are used in the layers’ attention modules.
The feed-forward layers have a hidden dimensionality of 2048.
A 2-layer convolutional network with 1024 internal channels,
output dimensionality of 256, kernel sizes of 5 and stride 2

1When collecting CoVoST-2, speakers are recorded saying random
sentences, thus the correlation between domain and speaker is assumed
to be minimal.

2available at coqui-ai [24]
3We train the s2t_transformer_s architecture from FAIRSEQ [25]

processes the 80-dimensional log-Mel spectrograms. The S2T-
Transformer-SP and S2T-Transformer-XS are identical to the
baseline but with 16 and 6 encoder layers respectively. The XS
architecture also reduces to 3 the number of decoder layers.

Probing Tasks Two tasks are proposed to measure acoustic
information, speaker classifier, and Spectrogram reconstruction.
For the speaker classifier, a single-layer Perceptron with a ReLU
as activation function has been chosen. With the exception of
the input tensor classifier with a hidden size of 80, all classifiers
have a hidden size of 256.4

For the Spectrogram reconstruction task, generators consist-
ing of 2 deconvolution layers are trained. These generators re-
construct the utterance’s mel-spectrogram from the output of the
attention blocks and convolutional subsampler from the trained
SLT models encoder. Parameter-wise, each generator consists
of a deconvolutional layer with input size 256 and hidden size
1024 and a second deconvolutional layer with input size 1024
and output size 80. Both layers have stride 2 and kernel size 5,
to recover the frequential and temporal dimensions of the real
mel-spectrogram.

Bottleneck Architectures. These modify the baseline by
adding a bottleneck to the output of a layer of the model (§3.2).
For the convolutional layers, the FFN is placed after the last
layer, and for the attention blocks, after their FFN and residual
connection. Using FNN, the bottleneck first projects the input to
a reduced feature space, specifically with dlatent = 128. It then
projects back the latent space to the model dimension.5

Training. To train all translation models we use the label
smoothed cross entropy loss and the Adam optimizer with a base
learning rate of 0.002, a 10000 step warm-up and an inverse
square root scheduler. We use a maximum of 20000 tokens
and an update frequency of 8. Training is stopped after 50000
updates. The encoders are initialized from the same model
configuration (except for the learning rate, with 0.001), pre-
trained on the ASR part of the data [4]. The data preprocessing
has been performed according to the guidelines provided in the
framework itself, therefore, the target vocabularies are learned
with SentencePiece for MuST-C, with a size of 8000, while for
CoVoST-2 char-based vocabulary have been used.

The speaker classifiers for each layer have been trained for
200 iterations using the Adam optimizer with a learning rate
of 0.001. We used 75% of the utterances of the corresponding
dataset test partition for training, while the rest of the samples
were used for its evaluation.

The transposed 1D convolutional layers have been trained
on the CoVoST-2 train split for 50 epochs to reconstruct the input
spectrogram using the MSE loss function. The Adam optimizer
has been utilized for this training, with a learning rate of 0.003.

Evaluation. For the SLT evaluation, we average the 10 best
checkpoints on the development set. The evaluation is performed
by measuring the BLEU [26]. Accuracy and F1 Score are used
to evaluate the speaker classification.6 The evaluation of the
spectrogram reconstruction has relied on Mean Square Error
(MSE).

4Note that the classification has been performed only with the test
partition of the datasets.

5Note that this layer is trained jointly with the model.
6Since the classification has 27 speakers, a random classifier would

give an accuracy of 3.7% , which means that the classifier would have
been unable to find speaker information in the input representation.
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Figure 2: Left, the mel-spectrogram computed from the dataset. Center, the reconstructed mel-spectrogram generated after the
convolutional layers. Right, the reconstructed mel-spectrogram generated from the encoder’s output.

Figure 3: Performance of the speaker classification based on the
output representations of the baseline layers.

5. Results
5.1. Acoustic Information Flow Analysis

First, we can observe from Fig. 3 how the 1D-convolutional
layers not only reduce the input sequence length but also project
it to a highly acoustic-rich representation space in which the
classifiers achieve more than 90% accuracy on both datasets.
The Transformer Encoder maintains a constant high acoustic
content representation space throughout the ≈ 60% of its layers,
which is then reduced to ≈ 50% of speaker information at the
end of the Encoder. This suggests that the first layers of the
Transformer Encoder learn to de-cluster the acoustic content so
that the last ones are able to eliminate the acoustic information
not contributing to the final objective (i.e., speaker informa-
tion). By measuring the amount of acoustic information through
speaker classification, a reduction in accuracy may indicate that
the Encoder is creating a semantic-based space of acoustic rep-
resentations. This is consistent with the improvement in ASR
performance obtained by [13] after boosting the speaker infor-
mation in the early Conformer layers and decreasing it in the
later ones, thus creating a more speaker-agnostic representation
space. In addition, this initial prioritization of acoustic informa-
tion could explain the observations of [10], where the attention
modules of the early Encoder layers assign similar importance
among all the tokens.

Second, analyzing the decoder part of the baseline, a signif-
icant discrepancy is observed in the patterns obtained by both
datasets. On the one hand, the acoustic information in the de-
coder of the CoVoST-trained architecture suffers from a substan-
tial drop (from 48% at the output of the Encoder to 20% at the

output of the first decoder layer). The last decoder representation
maintains a slight amount of acoustic information, reinforcing
the information transfer motivation of the end-to-end approach.

However, the model trained on MuST-C suffers only from
a slight decrease of acoustic information in the decoder stage,
reaching a 44% at its output, which highlights the high correla-
tion of the speaker’s labels with the domain of their semantics
later explained (§5.3).

5.2. Impact of Acoustic Information

Model depth. One of the main research questions of this work
is understanding how the acoustic information is represented
through the transformer attention layers. Studying the flow of
acoustic information in the different variations of the S2T Trans-
former, we can observe how the pattern described in (§5.1) is
maintained after increasing the depth of the model, performing a
more progressive drop in the last encoder layers until reaching
values similar to the baseline (from an accuracy of 0.89 at the
output of the convolutions to 0.58 by the end of the Encoder).
On the other hand, the amount of acoustic information contained
in the Encoder is significantly lower at smaller depths (With
accuracies between 0.53 and 0.23 for XS models).

Since at lower depths the encoder arbitrarily removes the
acoustic content from the beginning, while at greater depths it
remains very high, the concept of the encoder as the one in charge
of initially de-clustering the acoustic content and then removing
the non-relevant information in the last layers is reinforced. 7

Bottlenecks. Fig. 4 shows the evolution of the acoustic
information as a function of the bottleneck position at the encoder
stage. As discussed in (§3.2) and inspired by [27], bottlenecks
are used to decrease the representation size, forcing the model to
discard less useful information for the final task.

Using a bottleneck reduces the acoustic content at the corre-
sponding layer in both datasets. Afterward, most models attempt
to recover an acoustically rich space. Therefore, there is a ben-
eficial transfer of this information at the end-to-end models.
Moreover, except for the model with the bottleneck in layer 7,
a certain pattern is perceived between the amount of acoustic
information in the last encoder layer and the performance of
the models trained on CoVoST-2, where for acoustic contents
lower than 15% they show a performance drop between 1 to
2.16 BLEU. On the other hand, due to the high correlation of
the semantic domain and the speaker label discussed in (§5.3),
this pattern is not seen for the models trained with MuST-C.

7Detailed results and tables provided as supplemental multimedia
material.
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Figure 4: Accuracy of the speaker classifiers of each layer and BLEU performance of the models in Speech Translation’s. Left: Speaker
classification accuracy at different points of the training, with and without ASR pre-training. Right: MuST-C and CoVoST-2 performance
with different bottleneck positions.

Convolutional Layers. Speaker classification results sug-
gested that Convolutional layers not only reduce the temporal
dimension of the input mel-spectrogram but also act as a feedfor-
ward network that enriches the input representation, of 256 di-
mensions, by over-parametrizing it into a higher-dimensionality
of 1024 dimensions. This intuition is enforced further by the
spectrogram reconstruction results. Fig. 2 shows how the spec-
trogram reconstruction follows a curve similar to Speaker repre-
sentation, where the convolutional layers provide the best results,
with an average MSE distance of 0.102, that gradually increases
until the last encoder layer, which achieves an MSE distance
of 0.434. Analyzing the outputs, we observe that while all lay-
ers are able to identify the silences in the spectrogram, by the
end of the encoder, a significant amount of detail on the parts
that include speech is missing from the reconstructed spectro-
gram. To test this hypothesis, we trained an additional SLT
model without over-parametrization and observed a decrease
in translation performance of 1.80 BLEU, from 22.31 to 20.51
BLEU. These results indicate that convolutional layers and this
over-parametrization play a significant role in how the model
learns acoustic features from the data.

ASR Pre-training To analyze the impact of ASR pre-
training, we studied the speaker-classification performance dur-
ing different steps of the training with and without pre-training.
Fig. 4 left shows that without the pre-training, the model cannot
accurately predict the speaker until 20% of the training, where
we observe high accuracies throughout the entire encoder. As
the training progresses, the accuracy of the last encoder layers
decreases, indicating that the model shifts to a more semantic
representation.

5.3. Semantics & Speaker Label Correlation

As seen in Figures 5 and 4, MuST-C shows a strong correlation
between the semantic domain of speech and the speaker label,
unlike architectures trained with CoVoST-2, results in consider-
ably high accuracies in the decoding part of the models. This
idea is reinforced by the results obtained with (i) the synthesized
MuST-C test split, where speaker classification improves across

model layers (reaching an accuracy of 23% and 29% at the en-
coder and decoder outputs, respectively) and (ii) by TF-IDF
coding, where classification reaches an accuracy of 32% and an
FScore of 30%. For both experiments, classifiers do not have
acoustic information to distinguish between different speakers,
so their predictions are based exclusively on semantic content.
Rather than providing results typical of a random classification,
the performance obtained by the semantic classifiers coincides
with the difference in acoustic information present at the end of
both baselines.

6. Conclusions
This paper analyzed the acoustic information flow along the Spo-
ken Language Translation (SLT) models. The main conclusion
of the work could be summarized in four main blocks:

Firstly, the paper provided a view of the encoder as the one
responsible for declustering the acoustic information and shifting
to a more semantic representation. Secondly, to the best of our
knowledge, we have been the first observing a beneficial and nec-
essary transfer of acoustic information between the encoder and
decoder in end-to-end models, showing that the model retained it
even after trying to reduce it via bottlenecks. Thirdly, the paper
observed the importance of convolutional layers on SLT archi-
tectures by performing downsampling and over-parametrizing
the representation. Finally, the paper highlighted the need to
find data collection techniques whose labels do not depend heav-
ily on the semantic domain and thus ensured that the encoder
do not rely on non-acoustic information that might impair its
generalization capability.

Overall, the paper offered valuable insights into the acoustic
information flow in SLT models, useful for future research.
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