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Abstract
In conversational systems, the proper timing of the system’s re-
sponse is critical to maintaining a comfortable conversation. To
achieve appropriate timing estimation, it is important to know
what the users have said, including their most recent words, but
ASR delay usually prevents the use of full user utterance. In
this paper, we attempted to employ an extremely low latency
ASR model called Multi-Look-Ahead ASR by Zhao et al. to
enable near full utterance for response timing estimation. Ad-
ditionally, we examined the effectiveness of using low latency
ASR in combination with a parameter called Estimates of Syn-
tactic Completeness (ESC), which indicates how soon the user’s
speech is completed. We evaluated on a Japanese simulated di-
alog database of a restaurant information center. The results
confirmed that reducing ASR delay improves the accuracy of
response timing estimation. This effect also appeared when
the method using ESC is combined with the use of low latency
ASR.
Index Terms: spoken dialog systems, turn-taking, response
timing, streaming ASR

1. Introduction
By introducing an extremely low-latency ASR and combining
it with the prediction of speech completion, we attempt to im-
prove the accuracy of the response timing estimation where
quick responses are required in conversation.

In conversational systems, it is important to determine the
appropriate timing of the system’s response. In particular, if the
response timing is slower than expected, it may not only stall
the conversation or lead to collisions of utterances, but may even
convey an unwilling, hesitant, backward message.

As already pointed out in much of the literature [1, 2, 3,
4, 5], the appropriate response timing is context-dependent.
Therefore, appropriate timing estimation needs past ASR re-
sults. Depending on what this process is synchronized with,
response timing estimation methods can be classified into two
types. One is the end of utterance (EoU) synchronous timing
detection (ES-TD), and the other is the frame synchronous one
(FS-TD).

Many conversational systems [6, 7, 8, 9, 10, 11, 12, 13] em-
ploy ES-TD for ease of implementation. In this approach, after
detecting an EoU, ASR is performed. Based on the recognition
results, the system decides whether the user keeps or releases
the turn, and if it decides the turn is released, it starts speaking
after a certain time. In many cases, EoU detection itself is per-
formed in a context-independent manner. Therefore, accurate
EoU detection requires waiting for a stable pause, and a cer-
tain amount of time is necessary to output ASR results after this
detection. In the data we have, half of the human response tim-

ing is less than 350 ms, but EoU detection and ASR generally
require more than 350 ms. ES-TD based methods, which wait
for EoU detection to determine keeping/releasing, is unlikely to
achieve comfortable turn-taking as humans do.

On the other hand, FS-TD framework [14, 15, 16, 17, 18,
19, 20, 21] synchronizes with analysis frames at regular inter-
vals and decides whether or not to start speech. The decision
is made based on a combination of the linguistic features, in-
stantaneous word sequence output by the streaming ASR, and
the acoustic features such as prosody-related information. This
approach does not explicitly use EoU detection, so they enable
quicker responses than ES-TD. In addition, more fine-grained
timing controls are possible depending on the context. Thus,
this approach is thought to be more promising at this stage.

In previous work, we have introduced the language-model-
based following word-sequence prediction in the FS-TD frame-
work [21]. This method adds a new feature, named estimates of
syntactic completeness (ESC), to the response timing estima-
tion in addition to the commonly used linguistic and prosodic
features. ESC is a feature obtained by estimating how many
more words are needed to syntactically complete an utterance.
Humans also time their utterances while predicting whether or
not the conversational partner is about to finish speaking. This
method incorporates this in a natural way into FS-TD frame-
work.

Our previous method successfully improved the accuracy
of response timing estimation, however in his method, and also
in FS-TD in general, the delay in ASR causes several problems.
The streaming ASR model generally needs to look ahead to a
segment of speech in order to improve accuracy. In other words,
to obtain the recognition result at a certain time point, it is nec-
essary to wait for the input of the segment of speech to be looked
ahead. This means that there is a speech segment that has al-
ready been spoken but is not reflected in the linguistic feature,
the recognition result. In a general FS-TD framework, the ASR
delay prevents the use of language information that should be
available. Furthermore, in our previous method, the problem of
shortening the available ASR results due to this delay may also
affect the estimation of ESC.

In this study, we attempt to increase the linguistic infor-
mation available for FS-TD framework by introducing a low
latency ASR. In addition, we aim to improve the accuracy of
ESC estimation [21] and further improve the accuracy of re-
sponse timing estimation. As a low-latency ASR model, we
employ the Multi-Look-Ahead ASR [22] which consists of an
encoder with a long look-ahead to improve accuracy and an en-
coder with a zero look-ahead to reduce delay. Thanks to the part
of the zero-look-ahead encoder, the ASR delay can be dramati-
cally reduced without performance degradation.

The rest of the paper is organized as follows. Section 2
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Figure 1: Overall architecture of our proposed system.

introduces our proposed response timing estimation model. In
Section 3, we describe architecture of the ASR model and its
decoding algorithm. In Section 4, we examine the effectiveness
of the low latency ASR model through response timing esti-
mation experiments and analyze the results. Finally, Section 5
concludes this paper.

2. Response Timing Estimation Model
Figure 1 shows an overview of our proposed system. It consists
of feature extractors and a timing estimator.

2.1. Feature Extractor

The system has feature extractors that extract prosodic, tem-
poral, linguistic features and also features related to syntactic
completeness.
Prosodic features. To extract prosodic features, we use the
method of Yokoyama et. al. [23]. Their method reconstructs
narrowband spectrograms of 100ms speech signals by CNN-
Autoencoder and extracts 128-dimensional bottleneck feature
vectors as features representing the rising and falling patterns
of the fundamental frequency. We feed them to the LSTM [24]
and linear projection layers to obtain prosodic features.
Temporal features. We use the elapsed time after detecting
the EoU as temporal features. We estimate whether the user is
speaking or not using a LSTM-based pre-trained voice activity
detection (VAD) model. As the input features, we use the bottle-
neck feature vectors of the CNN-Autoencoder. The cumulative
sum of the probabilities of not speaking at each frame is calcu-
lated and used as the information representing the elapsed time
after detecting the EoU. This value is reset to 0 when the user
starts speaking. We also use the length of the previous utterance
as temporal information. We apply a linear projection layer to
these features and obtain temporal feature.
Linguistic features. First, the text of the utterance is obtained
by streaming ASR. The proposed system uses MLA CBS-T,
while a SLA CBS-T is used in the baseline system for compari-
son. The details of ASR are explained in Section 3. As the input
of ASR, we use 80-dimensional log-mel spectrogram features
and 3-dimensional pitch features. Then, an Transformer [25]
encoder is applied to encode the text and obtain linguistic fea-
tures.
Estimates of syntactic completeness (ESC) [21].

Using results from the streaming ASR, the language model
calculates the probability of EoU appearing K(1, . . . ,M) to-
kens ahead. For each tokens, it generates N candidates. A fea-
ture representing ESC is a vector obtained by arranging these K
values. ESC is effective especially to estimate quick response
timings as it represents whether the current utterance will be
finished in the near future.

Algorithm 1 Beam search for Multi-look ahead ASR

1: T p = TNl + TNc + TNr ▷ primary encoder block
2: T a = TNl + TNc ▷ auxiliary encoder block
3: Bp ← ∅, Ba ← ∅
4: (Hp,Ha)← Init() ▷ model state
5: for t = T p

B to T by T p
B do

6: Ep← PrimaryEncoder(X[t− T p, t])
7: (Bp,Hp)← BeamSearch(Bp,Ep,Hp)
8: Ea← AuxiliaryEncoder(X[t− T a, t])
9: (Ba,Ha)← BeamSearch(Bp,Ea,Hp)

10: y = Max(logPr( y
|y| )) in Ba ▷ streaming result

11: if ⟨eou⟩ in y then ▷ ending point
12: break

2.2. Timing Estimator

Timing estimator consists of LSTM and linear layers. It runs in-
crementally and classifies whether the system should speak or
not for each frame. The first frame classified as “system should
speak” is determined as the response timing of spoken dialog
system. The features extracted by feature extractor are concate-
nated and used as inputs. The prosodic and temporal features
are input in every frame (50ms). The linguistic features and
ESC are updated when the streaming ASR results are updated,
otherwise the same values as at the previous time are input to
the timing estimator. During training, binary cross entropy loss
between the ground truth and output y is minimized. The op-
timization is applied from the start of the user utterance to 1
second after the start of the system utterance.

3. Multi-Look-Ahead ASR
Transformer-based end-to-end ASR models achieve high per-
formance with the self-attention mechanism, but it needs to pro-
cess the entire input sequence. Attention masks enable stream-
ing ASR, but require a certain amount of look-ahead frames to
minimize the performance degradation in comparison to pro-
cessing the entire sequence. These look-ahead frames cause the
delay. We use Multi-Look-Ahead streaming ASR proposed by
Zhao et al. [22]. They introduced contextual block streaming
ASR technique to RNN-Transducer, and also integrated multi-
ple encoders with different delays.

3.1. Contextual Block Streaming Transducer (CBS-T)

The streaming ASR models in this paper are the Contextual
Block Streaming Transducers(CBS-T), based on RNN-T [26].
RNN-T consists of three modules: acoustic encoder, label en-
coder, and joint network. CBS-T uses an encoder of Contex-
tual Block Streaming ASR [27] (CBS-Encoder) for acoustic en-
coder. CBS-Encoder consists of 6 conformer [28] layers. The
input speech is divided into blocks with three parts representing
history, target, and look-ahead, whose numbers of frames are
Nl, Nc, and Nr , respectively. The b-th block Zb is processed as

Hb, cb = CBSEncoder(Zb, cb−1), (1)

where Hb and cb denote encoder output and contextual vector
when the b-th block is input, respectively. The contextual vec-
tor passes global context information from past blocks to the
current block.
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3.2. Multi-Look-Ahead CBS-T

While CBS-Encoder enables streaming ASR, it still has a cer-
tain delay because it requires look-ahead frames. To reduce
such delays while maintaining accuracy, Zhao et al. [22] pro-
posed CBS-T that integrates multiple encoders with different
delays. The encoders consist of a primary encoder which en-
sures high accuracy by encoding with a sufficient amount of
look-ahead, and auxiliary encoders which give low latency re-
sults by encoding inputs of the look-ahead part of the primary
encoder with a shorter look-ahead. While they proposed several
architectures combining these encoders, in this study, we use
one where the parameters are shared among the encoders and
the auxiliary encoders receive the shifted input of the primary
encoder to output the result corresponding to the look-ahead
frames. This architecture achieves low latency and high accu-
racy while reducing model size by sharing parameters. We call
this ASR system MLA CBS-T (Multi-Look-Ahead CBS-T). On
the other hand, we refer to the single-encoder CBS-T used in the
baseline model for comparison as SLA CBS-T.

Algorithm 1 shows the beam search algorithm in MLA
CBS-T when Nr/Nc = 1. MLA CBS-T has Nr/Nc auxil-
iary encoders.The primary encoder outputs results up to time
t− TNr corresponding to the target frame at time t, where TNr

denotes the time for Nr frames. Therefore, ASR is delayed by
TNr . The input speech of ith auxiliary encoder is shifted i×Nc

frames from the primary encoder’s input. The numbers of the
history frames and the target frames are Nl and Nc, the same as
the primary encoder, and the number of the look-ahead frames
is Nr − i × Nc. The auxiliary encoder outputs results up to
time t − TNr + Ti×Nc , which is not included in the output of
the primary encoder, to reduce delay. The beam search is first
performed using the output of the primary encoder to update
the search space Bp. Next, beam search is performed using the
output of the auxiliary encoder. At this time, beam search is
performed based on the primary encoder’s search space Bp, and
the search space is updated to Ba. The next time, the search be-
gins from the search space Bp before reflecting the update with
the auxiliary encoder. Therefore, the ASR results reflect the re-
sults of the auxiliary encoder only at the time corresponding to
the latest look-ahead frames, and the results of the primary en-
coder, which has a larger look-ahead size and higher reliability,
are reflected for other frames including the target frame in latest
block.

4. Experiments
We conducted experiments to verify whether a low latency ASR
model is effective in response timing estimation and whether
it is also effective when combined with ESC. We compare the
proposed model with the baseline model, which utilizes SLA
CBS-T without ESC, the model that uses MLA CBS-T, and the
model that uses ESC.

4.1. Experimental Setting

We use the system described in Section 2, using SLA CBS-T
as ASR and excluding the use of ESC as the baseline. For both
the prosodic feature extractor and the VAD model, single layer
LSTM which has 512 hidden dimensions is applied. Parame-
ters M and N in syntactic completeness prediction are set to 5
and 3, respectively. The number of the layers, attention head,
and hidden dimension of the Transformer encoder for linguis-
tic feature extraction are set to 3, 2, and 300 respectively. The
dimension of the prosodic feature hp, the temporal feature ht,

Table 1: Character Error Rate and delay on our dataset.

Method Delay [ms] CER [%]

SLA CBS-T 320 15.9
MLA CBS-T 64 16.2

and the linguistic feature hl are all set to 128.
The token units for ASR and linguistic feature extraction

are Japanese characters. All encoders in both SLA CBS-T and
MLA CBS-T have a common structure. We used 6 Conformer
layers for the acoustic encoder and one layer of LSTM for the
label encoder. The number of frames for history (Nl), target
(Nc), and look-ahead (Nr) in the primary encoder of CBS-T
are set to 8, 4, and 8, respectively. Every ASR model was pre-
trained with the core data of the CSJ corpus and then fine-tuned
to our datasets. For decoding, we use the modified adaptive
expansion beam search [29] with beam size of 5. In this exper-
iment, for linguistic feature extraction, ASR is run in advance
and its results are input to the Transformer encoder, taking into
account the ASR delay. We assumed a 100 ms processing delay.

As described in Section 1, response timing estimation ap-
proaches can be classified into ES-TD and FS-TD, and the pro-
posed method is FS-TD. As an ES-TD approach for compari-
son, we use a model based on GMF [13]. We replace the fea-
ture extraction part of GMF with that of our proposed model.
The fixed pause was set to 350 ms, which is the median of the
response timing distribution in the validation set.

Every model was trained for 30 epochs with AdamW [30].
The learning rates are set to 0.001 for our model and 0.0001 for
GMF. The ASR model, the language model for syntactic com-
pleteness prediction, and the VAD model for temporal feature
extraction are trained separately on the training set.

4.2. Data

We conducted our experiments on Japanese simulated spoken
dialog data. This dataset contains a simulated conversation be-
tween two people playing the roles of user and agent of a restau-
rant information center. In the experiments, the agent’s response
timings were estimated as those of the spoken dialog systems.
The dataset contains 90 dialogs, each averaging about 10 min-
utes, for a total of 14 hours. We used 72 dialogs for training,
and 18 dialogs for test and evaluated the results by conducting
a five-fold cross-validation. Unnatural data, e.g. long pause
caused when the agent searches for a restaurant by the user’s
request, were excluded from the dataset. The final dataset used
in the experiment included 4,927 pauses during user utterance
and 1,231 speaker changes from user to agent.

4.3. ASR Results

Table 1 shows the character error rate (CER) and delay of en-
coder in SLA CBS-T and MLA CBS-T. The delay is calculated
assuming that the reference token is in the center of the input
block. MLA CBS-T degraded CER by 0.3% but reduced the
256 ms delay caused by look-ahead frames.

4.4. Response Timing Estimation Results

Table 2 shows the experimental results of response timing esti-
mation. To evaluate whether the system was able to stay silent
in a situation without a speaker change, start speaking in a sit-
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Table 2: Experimental results. Px, Rx, and Fx denote precision, recall, and F1 score, respectively. Each score is calculated assuming
x seconds is the acceptable absolute error.

Method P0.25 R0.25 F0.25 P0.50 R0.50 F0.50 P1.00 R1.00 F1.00

GMF 0.270 0.233 0.248 0.475 0.410 0.437 0.582 0.502 0.535

Baseline 0.340 0.380 0.357 0.534 0.587 0.557 0.700 0.765 0.729
+ MLA 0.361 0.389 0.375 0.550 0.590 0.569 0.720 0.771 0.744
+ ESC 0.364 0.397 0.380 0.546 0.596 0.570 0.707 0.771 0.737
+ MLA + ESC 0.373 0.415 0.393 0.552 0.615 0.581 0.707 0.788 0.745

Figure 2: Number of the correct answers per pause duration
between user utterance and system utterance. The first and sec-
ond rows of the bar graph show the cases of 250 ms and 500 ms
acceptable absolute error, respectively.

uation with a speaker change, and if so, whether it was able
to speak at the appropriate timing, we use the precision, recall,
and F1 score calculated with various acceptable absolute errors
between the estimated and ground truth timings. If the esti-
mated and ground truth timings are within the acceptable error,
they are treated as true positives. Recall indicates whether the
responses were correctly estimated in the situation where the
system should speak within the absolute errors on the occasions
when the system should speak. Precision indicates how many
of the system’s inferred utterances were correct.

Our models outperform the approach using GMF in all met-
rics. Unlike the ES-TD based approach including GMF, which
runs only at the EoUs, the proposed approach estimates sequen-
tially, and thus is able to use more temporal information.

The model with MLA CBS-T outperforms the baseline
model in all metrics. In addition, the model with both ESC and
MLA CBS-T outperforms the model with ESC and SLA CBS-T
in all metrics. These results indicate that low-latency decoding
by MLA CBS-T improves the performance of response timing
estimation and it is also effective when combined with ESC.

Figure 2 shows the number of samples that the system
should take a turn for each ground truth timing, and the number
of samples that each model correctly predicted within the ac-
ceptable absolute errors. We can see the increase in the number
of correct answers by introducing MLA CBS-T and ESC in the
range of response timing from 0 ms to 300 ms. In other words,
as we expected, the two approaches improve the performance
of response timing estimation for quick response.

Figure 3: Number of the correct answers per pause duration in
user utterance.

Figure 3 shows the number of samples that the system
should not take a turn for each length of pause during user, and
the number of samples that each model correctly predicted that
the system should not speak. The differences among the mod-
els are small compared to Figure 2, but the number of correct
answers is slightly lower when ESC is used. We analyzed that
the model using ESC incorrectly predicted turn-taking because
completion of utterance was predicted when an expression ap-
peared in the middle of a user utterance that actually continued
but could have ended the utterance.

5. Conclusions
Although human conversation often involves quick responses,
conventional response timing estimation models have difficulty
predicting quick responses due to ASR delays. The ASR delay
prevents the use of linguistic information near the end of speech
which is crucial especially when estimating quick responses.
We introduced MLA CBS-T to reduce delay while minimizing
the degradation of ASR accuracy. We conducted experiments
to confirm the effectiveness of reducing ASR delay in response
timing estimation. We also verified whether it is effective when
combined with a method from a previous study that uses a fea-
ture called ESC. Experimental results showed that introducing
MLA CBS-T is effective in improving the performance of ESC
estimation and response timing estimation for quick response.
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