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Abstract
We propose an unsupervised approach for training sepa-

ration models from scratch using RemixIT and Self-Remixing,
which are recently proposed self-supervised learning meth-
ods for refining pre-trained models. They first separate mix-
tures with a teacher model and create pseudo-mixtures by shuf-
fling and remixing the separated signals. A student model is
then trained to separate the pseudo-mixtures using either the
teacher’s outputs or the initial mixtures as supervision. To refine
the teacher’s outputs, the teacher’s weights are updated with the
student’s weights. While these methods originally assumed that
the teacher is pre-trained, we show that they are capable of train-
ing models from scratch. We also introduce a simple remixing
method to stabilize training. Experimental results demonstrate
that the proposed approach outperforms mixture invariant train-
ing, which is currently the only available approach for training
a monaural separation model from scratch.
Index Terms: monaural source separation, unsupervised learn-
ing, remixing, deep learning

1. Introduction
Remarkable progress has been made in source separation thanks
to advances in neural networks [1–3]. Typically, models are
trained with supervised learning, exploiting a large number of
the mixture and ground truth pairs. However, obtaining these
pairs in real-world environments is challenging, so they are gen-
erally synthesized using simulation toolkits [4]. Unfortunately,
the separation performance in real environments is often de-
graded due to mismatches with real-recorded mixtures, such as
differences in reverberation, noise type, or channel mismatch.

To address this issue, unsupervised learning methods di-
rectly train models using real-recorded mixtures without ground
truths [5, 6]. In monaural source separation, mixture invari-
ant training (MixIT) [7] has been highly successful in a vari-
ety of separation tasks by training models to separate a mixture
of mixtures (MoM), which is created by summing up multiple
mixtures [8–10]. However, due to the mismatch between MoMs
and the actual mixtures in that MoMs contain more sources,
models often suffer from the over-separation problem.

To address the over-separation issue, several attempts have
been made to refine MixIT pre-trained models in an unsuper-
vised manner. Teacher-student MixIT [11] trains a new stu-
dent model with fewer output channels, using the MixIT pre-
trained model as a teacher. On the other hand, RemixIT [12,13]
trains a student model to estimate the teacher’s outputs from
a pseudo-mixture generated by shuffling and remixing the
teacher’s outputs. While Teacher-student MixIT uses a static
teacher, RemixIT iteratively updates the teacher’s weights using
the student’s weights, leading to improved performance. Self-

Remixing [14] has a similar training process to RemixIT but
uses initial mixtures as supervision to ensure training stability.

In contrast to the multi-stage training methods that refine
MixIT pre-trained models, we propose a novel approach to train
models from scratch using RemixIT and Self-Remixing. While
refining pre-trained models has shown success, training from
scratch with them has not been explored because of the antici-
pated high level of distortion in pseudo-mixtures generated by
randomly initialized models, as well as the possibility of falling
into trivial solutions that do not separate sources. However, our
empirical findings suggest that pseudo-mixtures generated by
randomly initialized models can be treated as MoMs, and the
training can be done through MixIT-like optimization problems,
indicating that RemixIT and Self-Remixing can be effective
even when starting from scratch. Furthermore, we introduce
a carefully designed remixing algorithm to overcome the triv-
ial solution issue. At the start of training, there is a significant
mismatch between pseudo-mixtures and actual mixtures since
pseudo-mixtures become MoMs. However, such a mismatch
gradually decreases as the teacher model is refined, leading to
better performance than using static MoMs.

Our main contributions can be summarized as follows: i)
We show how to train models from scratch using RemixIT and
Self-Remixing, without the need for pre-training. Additionally,
we propose a remixing method to enhance training stability. ii)
We investigate the impact of the remixing algorithm on the sep-
aration performance, which has received little attention until
now. Our analysis reveals that the design of the remixing al-
gorithm plays a crucial role in the final separation performance,
especially regarding the word error rate.

2. Methods
Our proposal is to train separation models from scratch in an
unsupervised manner using RemixIT or Self-Remixing. We
start by providing an overview of related methods, including
MixIT [7] and mixture permutation invariant training (Mix-
PIT) [15]. Then, we delve into the details of RemixIT and Self-
Remixing and explain how they work from scratch. To enhance
the training stability, we introduce a simple remixing method.

Let us denote a mini-batch of B mixtures as x ∈ RB×T ,
where T denotes the number of samples in the time domain.
Each mixture in the batch, denoted as xb (b=1, . . . , B), may
contain up to K sources. To define a separator with N output
channels, we use fS with its parameters represented by θS .

2.1. MixIT and MixPIT
To generate a mixture of mixtures (MoM) x̄, MixIT takes a
mini-batch x and adds sets B′ mixtures together, denoted as
x1, . . . , xB′ . The resulting x̄ is then fed into fS to produce
separated signals ŝ ∈ RN×T (N ≥ B′K). The MixIT loss is
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Figure 1: Overview of RemixIT and Self-Remixing. We first make pseudo-mixtures by separating mixtures with fT and remixing outputs.
We then train fS to separate pseudo-mixtures using outputs of fT or initial mixtures as supervision. Channel shuffle (bottom left) is
introduced to stabilize Self-Remixing. Note that they can be applied regardless of B and N .

then computed between these separated signals and the individ-
ual mixtures, as described in [7]:

LMixIT = min
A

∑B′

b′=1
L(xb′ , [Aŝ]b′), (1)

where L is a loss function and A ∈ BB′×N assigns each ŝn to
the original mixtures. B′ is typically set to two. While MixIT
has made unsupervised monaural source separation feasible, the
models often encounter an over-separation issue due to the fact
that MoMs contain more sources than individual mixtures.

MixPIT is a recent development that aims to address the
over-separation problem. MixPIT creates MoMs by summing
the same number of mixtures as the number of sources in indi-
vidual mixtures (K) and trains the models to estimate the indi-
vidual mixtures directly (i.e., B′ = N = K). Despite under-
performing MixIT, as reported in [15], the success of MixPIT
implies that RemixIT and Self-Remixing can also be used ef-
fectively from scratch (as detailed in Section 2.3).

2.2. RemixIT and Self-Remixing
An overview of RemixIT and Self-Remixing is provided in
Fig. 1. RemixIT involves a teacher model, denoted as fT , that
generates pseudo-mixtures from observed mixtures, and a stu-
dent model, denoted as fS , that is trained to separate these
pseudo-mixtures. The student model is trained via gradient
descent using the teacher’s outputs as supervision, while the
teacher’s parameters θT are updated using the student’s param-
eters θS . Self-Remixing follows a similar training procedure as
RemixIT but uses the initial mixtures as supervision.

The teacher fT first separates the mixtures x into sources:
s̃ = fT (x;θT ) ∈ RB×N×T . To ensure that the sources add
up to the initial mixtures,

∑N
n=1 s̃b,n = xb, we enforce mixture

consistency (MC) [16]. Next, we shuffle the sources within a
batch in each output channel n with an B×B permutation ma-
trix Πn, and make pseudo-mixtures x̃ by adding them together:

x̃b =
∑N

n=1
s̃
(Π)
b,n , s̃

(Π)
b,n = [Πns̃

⊤
n ]b, (2)

where we define ⊤ as the transpose of the first and the second di-
mension (RB×N×T → RN×B×T ) and s̃⊤

n ≜ [s̃1,n, . . . , s̃B,n].
The process described in Eq. (2) is referred to as batch shuf-
fle. After remixing, fS separates the pseudo-mixtures: ŝ =
fS(x̃;θS). The loss for RemixIT is computed in a permutation-
invariant way [2] between the separated signals of fT and fS :

L(b)
RemixIT = min

P

1

N

∑N

n=1
L(s̃(Π)

b,n , [Pbŝb]n), (3)

where Pb is an N × N permutation matrix. We then align ŝb

in the same order as s̃(Π)
b using the optimal permutation matrix

P̄b: ŝ(P̄ )
b = P̄bŝb. Next, we restore the order of sources to their

original sequence before the batch shuffle in Eq. (2):

ŝ
(Π−1)
b,n = [Π−1

n ŝ(P̄ )⊤
n ]b, (4)

where ŝ
(P̄ )⊤
n ≜ [ŝ

(P̄ )
1,n , . . . , ŝ

(P̄ )
B,n]. The Self-Remixing loss is

computed using the initial mixtures as supervision:

L(b)
Self−Remixing = L

(
xb,

∑N

n=1
ŝ
(Π−1)
b,n

)
. (5)

While fS is trained via gradient descent using Eqs.(3) or
(5), the teacher’s parmeters θT are updated using the student’s
parameters θS . In this work, we update θT in the exponential
moving average (EMA) fashion at every epoch end:

θ
(j+1)
T = αθ

(j)
T + (1− α)θ

(j)
S , (6)

where α ∈ [0, 1] and j is the epoch index. We set α = 0.8.

2.3. Why do RemixIT/Self-Remixing work from scratch?
In this work, we demonstrate that RemixIT and Self-Remixing
can work even when fT is randomly initialized, contrary to the
original assumption that fT is pre-trained.

We analyzed the output of a model initialized randomly1

using the Conformer architecture described in Section 3.2, and
noisy two-speaker mixtures described in Section 3.1. Our em-
pirical results indicated that the outputs after enforcing MC
tended to be similar to the input mixture, albeit with differ-
ent scales. Specifically, the average scale-invariant signal-to-
distortion ratio (SISDR) [18] of the outputs compared to the
input mixture was 18.4 dB, indicating that they were somewhat
distorted, but the deviation from the initial mixtures was small.

Based on the assumption that the outputs of fT can be con-
sidered as mixtures, the pseudo-mixtures created by remixing
them can be treated as MoMs. Given this assumption, the loss
function used in RemixIT is the same as MixPIT’s because
RemixIT trains the models to separate MoMs into each mix-
ture. In addition, Self-Remixing also promotes the separation
of MoMs to reconstruct the initial mixtures. Therefore, the ob-
jectives of RemixIT and Self-Remixing are similar to MixPIT’s.
These analyses suggest that RemixIT and Self-Remixing can be
effective even when starting from random initialization.

Note that while our analysis was conducted using the Con-
former architecture, depending on the architecture, there may be
cases where the outputs of fT deviate from the input mixtures
and the above assumption does not hold. However, it is possible
to ensure that the assumption holds, e.g., by initializing the out-
put layer of fT with zeros. This results in all outputs having the

1We used the default initialization strategy of Pytorch 1.12.1 [17].
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same values (e.g., simply zeros or 0.5 with the sigmoid activa-
tion) and the MC layer scales the sources to be 1

N
mixtures, so

pseudo-mixtures become MoMs. While models were randomly
initialized in this work, we confirmed that RemixIT and Self-
Remixing still worked when we initialized the final linear layer
of the Conformer with zeros.

2.4. Design of Remixing
We introduce our proposed remixing algorithm which has been
specifically designed to facilitate training from scratch.
Channel shuffle (CS): In the previous subsection, we dis-
cussed how RemixIT and Self-Remixing can operate without
pre-training. However, we discovered that Self-Remixing can
encounter a trivial solution in that sources are not separated at
all because the Self-Remixing loss can be minimized even when
the model does not separate sources. Specifically, the model
outputs the input mixture from one output channel and zeros
from the others, e.g., s̃b,1 = xb and s̃b,n ̸=1 = 0. Since the
batch shuffle (as seen in Eq. (2)) is conducted in each output
channel, the model may easily fall into such a trivial solution.
To address this problem, we propose a solution called channel
shuffle (CS), which shuffles sources that are separated from the
same mixture before the batch shuffle:

s̃b ← Λbs̃b ∈ RN×T , (7)
where Λb is an N ×N permutation matrix. We show this sim-
ple method greatly improves the stability of Self-Remixing.
Avoiding remixing of sources from the same mixture: When
the permutation matrix Πn in Eq.(2) is randomly set, pseudo-
mixtures sometimes contain the sources separated from the
same mixture. However, such pseudo-mixtures interfere with
training when applying RemixIT from scratch. Let us consider
the case where fT with N = 3 is randomly initialized and
the pseudo-mixture is composed of the following three sources
s̃1 = 1

3
x1, s̃2 = 1

3
x2, s̃3 = 1

3
x2 (i.e., x̃ = 1

3
x1 + 2

3
x2). In

this case, RemixIT loss encourages fS to separate 2
3
x2 into two

1
3
x2; however, this objective does not necessarily improve sep-

aration performance. As a result, when applying RemixIT, we
opt to select the permutation matrix Πn under the condition that
sources from the same mixture are not remixed. Note that Self-
Remixing is still effective even when the sources from the same
mixture are remixed because it encourages fS to separate x̃ into
1
3
x1 and 2

3
x2 to reconstruct initial mixtures, x1 and x2.

3. Experiments
3.1. Datasets
WSJ-mix: We synthesized two-speaker mixtures with reverber-
ation and noise using speeches from WSJ0 [19] and WSJ1 [20]
and noises from CHiME3 [21] at a sampling rate of 8kHz. The
configuration was similar to that of SMS-WSJ [22] but with
changes in reverberation times, and noise type and level. Py-
roomacoustics [4] was used for simulation, and the reverber-
ation times were chosen from 0.2 s to 1.0 s. Additionally, all
source image locations were jittered by up to 8cm to avoid the
sweeping echo problem [23]. Note that the condition is dif-
ferent from our previous paper [14]. The SNR of the noise
ranged between 10 dB to 20 dB. The dataset consisted of 33561
(∼87.4h), 982 (∼2.5h), and 1332 (∼3.6h) mixtures for the
training, validation, and test sets, respectively. To evaluate word
error rates (WERs), we used the ASR backend provided in [22].
FUSS: We utilized the anechoic version of the free universal
sound separation (FUSS) dataset [24] to evaluate the perfor-
mance in USS tasks [25]. The dataset comprised mixtures with
one to four sources, drawn from 357 classes of audio sources.

All mixtures were ten seconds long and sampled at 16kHz. The
training, validation, and test sets contained 20000, 1000, and
1000 mixtures, respectively.

3.2. Separation model
As the separation model, we utilized Conformer [26] (imple-
mented based on [27]). The model contained about 21.6M pa-
rameters and was composed of 16 Conformer encoder layers
with four attention heads, 256 attention dimensions, and 1024
feed-forward network dimensions. We replaced the batch nor-
malization [28] with the group normalization [29] with eight
groups. It took log-magnitude (or magnitude) spectrograms in
the STFT domain as inputs and produced real-valued TF masks
in WSJ-mix (FUSS). The FFT size was 512 and the window
size and the hop length were 400 and 160, respectively.

3.3. Compared methods
We compared the performance of several methods, includ-
ing MixIT, MixIT+Sparsity, RemixIT, Self-Remixing, and
their supervised counterparts, Sup. RemixIT and Sup. Self-
Remixing. MixIT is implemented based on [30]. In MixIT
and MixIT+Sparsity, N was set to six in WSJ-mix and eight in
FUSS, and we ensured MC. In the other methods, N was set
to three in WSJ-mix and four in FUSS. MixIT+Sparsity uses
the sparsity loss (Eq. (6) in [8]) that promotes sparsity of the
outputs and prevents over-separation. Note that the sparsity
loss does not necessarily improve separation performance, as
demonstrated in [8]. We trained RemixIT and Self-Remixing
from scratch using Eqs. (3) and (5), respectively. For the su-
pervised versions, we used ground-truth signals instead of the
outputs of fT to create pseudo-mixtures.

We excluded MixPIT from the baseline because prior stud-
ies have demonstrated that MixIT outperforms MixPIT [15].
Additionally, we did not consider remix-cycle-consistent learn-
ing [31, 32], which is similar to Self-Remixing but shares pa-
rameters between θT and θS and computes the gradient through
two separation and remixing processes because we did not
achieve good results when training it from scratch.

3.4. Training details
As the signal-level loss function L, we used the negative thresh-
olded SNR between the reference y and the estimate ŷ:

L(y, ŷ) = −10 log10
||y||2

||y − ŷ||2 + τ ||y||2 , (8)

where τ = 10−3 is a threshold that clamps the SNR at 30 dB.
In supervised methods, we used the SNR loss that can handle
zero-references (Eq. (2) of [24]), instead of Eq. (8).

When training with WSJ-mix, the batch size was 32 and the
input was 7 seconds long. Models were trained for 600 epochs.
When training with FUSS, the batch size was 16 and the input
was 10 seconds long. Models were trained for 400 epochs. In
both experiments, we used the AdamW optimizer [33] with the
weight decay of 1e-2. The learning rate was increased linearly
from 0 to 2e-4 over the first 5000 training steps, kept constant at
2e-4 for 100 epochs, and then decayed by 0.98 for every three
epochs until it reached 2e-5. The gradients were clipped with
a maximum norm of 5. In MixIT+Sparsity, we initially trained
the model for 450 (300) epochs using only the MixIT loss. We
then fine-tuned the model with the sparsity loss for 150 (100)
epochs in WSJ-mix (FUSS), with the weight of sparsity loss set
to 4 (23). In supervised methods, all-zero pseudo-mixtures were
occasionally generated, but we did not use them for training.

To normalize each mixture, we subtracted its mean and di-
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Table 1: Evaluation results on WSJ-mix test set.
Method SISDR STOI PESQ WER

Unprocessed -0.4 0.684 1.82 82.9%

A1 MixIT 8.8 0.847 2.54 42.3%
A2 + Sparsity 8.6 0.843 2.51 44.8%
A3 RemixIT w/o CS 10.8 0.890 2.84 47.4%
A4 RemixIT 10.3 0.878 2.75 43.3%
A5 Self-Remixing 10.3 0.877 2.69 50.1%
A6 Self-Remixing† 10.3 0.878 2.74 39.7%

Sup. RemixIT w/o CS 10.9 0.896 3.01 30.9%
Sup. RemixIT 10.6 0.889 2.93 33.4%
Sup. Self-Remixing 10.6 0.889 2.93 33.7%
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Figure 2: Validation SISDR of fS of RemixIT and Self-Remixing
in early stage of training.

vided it by its standard deviation. For MoM x̄ in MixIT, we
followed the same process. Although [14] reported the instabil-
ity of RemixIT in source separation tasks, we found that nor-
malization improves the stability of the model. As a result, we
successfully trained models on reverberant noisy two-speaker
mixtures similar to the dataset used in [14]. It is worth noting
that we only normalized the initial mixtures x and did not nor-
malize the pseudo-mixtures x̃ because normalizing x̃ resulted
in lower performance in our experiments.

3.5. Results on WSJ-mix
The results for SISDR [34], short-time objective intelligi-
bility (STOI) [35], perceptual evaluation of speech quality
(PESQ) [36], and WER on WSJ-mix are shown in Table 1. To
evaluate the model, we used the averaged parameters from five
checkpoints that yielded the highest SISDR on the validation
set. Note that † denotes instances where we allowed remixing
of sources from the same mixture (e.g., Self-Remixing† in A6).

The results show that both RemixIT and Self-Remixing per-
formed well from scratch and outperformed MixIT in terms of
speech metrics. However, the WERs of A3-A5 were worse
than that of MixIT. As discussed in [14], remixing-based meth-
ods are trained with distorted pseudo-mixtures, which can re-
sult in models outputting distorted signals. This implies that the
distortion caused by using pseudo-mixtures is more harmful to
speech recognition than that caused by using MoMs for train-
ing. Despite this, the substantial improvement in the WER from
A5 to A6 suggests that allowing remixing of sources from the
same mixture can alleviate distortion in separated signals.

Fig. 2 displays the validation SISDR in the early stage
of training. It has been confirmed that CS stabilizes Self-
Remixing. This outcome, along with the observed WER im-
provement in A6, highlights the significance of the remixing
algorithm. It impacts both the final separation performance and
training stability. In future work, we plan to explore a more
thoughtfully designed remixing approach to enhance the per-
formance of both Self-Remixing and RemixIT.

3.6. Results on FUSS
The evaluation results on the FUSS test set are listed in Table 2,
which includes the following evaluation metrics [8]: 1S, repre-

Table 2: Evaluation results on FUSS test set. Checkpoints that
gave best MSi (B*) and TRF (C*) were evaluated.

Method 1S 2Si 3Si 4Si MSi TRF

B1 MixIT 9.5 9.8 14.4 15.9 13.2 12.2
B2 + Sparsity 15.2 12.3 15.5 16.6 14.7 14.8
B3 RemixIT 42.1 12.3 11.7 8.2 10.8 19.1
B4 Self-Remixing 29.4 14.7 16.2 13.6 14.8 18.7
B5 Self-Remixing† 31.9 14.9 15.9 13.7 14.8 19.4
Sup. Self-Remixing 32.9 14.1 15.8 13.5 14.5 19.4

C1 MixIT 9.5 9.9 14.3 15.8 13.2 12.2
C2 + Sparsity 18.0 12.3 15.5 16.5 14.7 15.6
C3 RemixIT 63.6 4.6 2.1 0.1 2.4 18.6
C4 Self-Remixing 34.4 14.8 15.9 13.1 14.6 19.8
C5 Self-Remixing† 34.9 15.0 15.6 13.4 14.7 20.0
Sup. Self-Remixing 49.2 13.7 14.7 12.0 13.5 23.0

senting the SISDR for single-source mixtures; kSi, represent-
ing the SISDR improvement (SISDRi) for k-source mixtures
(k = 2, 3, 4); MSi, representing the average SISDRi for multi-
source mixtures; and TRF, representing the total reconstruction
fidelity with average performance on all test data. For evalua-
tion, we utilized the averaged model parameters from the five
checkpoints that resulted in the highest MSi (B*) and TRF (C*)
on the validation set. It is worth noting that, unlike [24], we did
not discard estimate-reference pairs with low-energy estimated
sources following [37], as we believe that errors in low-energy
estimates should be taken into account.

The results indicate that Self-Remixing achieved higher
TRF than MixIT+Sparsity while providing almost the same
MSi. Unlike MixIT, which suffers from low 1S due to the in-
clusion of at least two sources in MoMs, Self-Remixing attains
high performance in both 1S and MSi by utilizing both single-
source and multi-source pseudo-mixtures.

In RemixIT, the separation performance initially improved,
but then it deteriorated. This can be attributed to the fact that
many mixtures have fewer sources than the number of output
channels, and as a result, fT often outputs sources that are close
to zero. In such a case, the RemixIT loss encourages fS to out-
put zeros, leading to under-separation. As the teacher’s weights
are updated with the student’s weights, under-separation occurs
more frequently in fT , resulting in high 1S but low MSi.

Interestingly, the unsupervised Self-Remixing resulted in
slightly higher MSi than the supervised one. We attribute this
to the over-separation of fT . Specifically, when fT separates
three-source mixtures, for instance, over-separation can lead to
the output of four sources instead of the expected three sources
and one zero signal. As a result, the average number of sources
contained in pseudo-mixtures becomes higher than that of su-
pervised learning, leading to higher MSi and lower 1S.

4. Conclusion
We proposed to train separators from scratch with RemixIT and
Self-Remixing. We showed that their training objectives are
similar to MixPIT’s at the start of the training and thus they are
capable of training without any pre-training. The experiments
demonstrated the effectiveness of RemixIT and Self-Remixing
even when training from scratch, as well as the importance of
remixing method. In the future, we will explore the applicabil-
ity of the proposed method to other separation models [3, 38].
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