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Abstract
Fully convolutional recurrent neural networks (FCRNs) have
shown state-of-the-art performance in single-channel speech
enhancement. However, the number of parameters and the
FLOPs/second of the original FCRN are restrictively high. A
further important class of efficient networks is the CRUSE
topology, serving as reference in our work. By applying
a number of topological changes at once, we propose both
an efficient FCRN (FCRN15), and a new family of effi-
cient convolutional recurrent neural networks (EffCRN23,
EffCRN23lite). We show that our FCRN15 (875K pa-
rameters) and EffCRN23lite (396K) outperform the already
efficient CRUSE5 (85M) and CRUSE4 (7.2M) networks, re-
spectively, w.r.t. PESQ, DNSMOS and ∆SNR, while requiring
about 94% less parameters and about 20% less #FLOPs/frame.
Thereby, according to these metrics, the FCRN/EffCRN class
of networks provides new best-in-class network topologies for
speech enhancement.
Index Terms: noise suppression, efficient networks, convolu-
tional recurrent neural networks, speech enhancement

1. Introduction
In single channel noise suppression the aim is to estimate
a clean speech signal from a noisy mixture of clean speech
and interfering background noise. For real world applica-
tions, efficient methods enabling low-latency real-time process-
ing and adhering to memory limitations are of utmost impor-
tance [1, 2, 3, 4]. Recently, neural networks have seen increas-
ing use for this task with many of the prominent approaches
estimating a complex spectral mask for the noisy speech in the
short-time Fourier transform (STFT) domain [5, 6, 7, 8].

Especially convolutional neural networks (CNNs) have
been widely used for the task of speech enhancement [9, 10, 11].
The sliding kernels allow for precise modelling of local depen-
dencies in the speech spectra [10].

Recurrent processing has been employed to model tem-
poral dependencies in addition to spectral characteristics [12].
Namely, long short-term memory (LSTM) [13] and gated recur-
rent unit (GRU) [14] layers have been incorporated into CNNs
[15, 16]. A fully convolutional recurrent network (FCRN) [10]
has been introduced to combine the strengths of convolutional
modelling even throughout the recurrent layers by using con-
volutional LSTMs (CLSTMs) for feature processing, achieving
state-of-the-art performance [6].

Considering the reduction of computational complexity,
multiple approaches such as pruning or quantization have been

proposed [3, 1]. Earlier models achieved efficiency using hy-
brid processing methods and coarse features [4] while recent
methods employed deep filtering in a multi-stage setup [17].
While other fields have seen neural architecture search em-
ployed to find efficient base topologies for subsequent scaling
[18], in speech enhancement an important recent advancement
in terms of providing an efficient high-performance topology
was the Convolutional Recurrent U-net for Speech Enhance-
ment (CRUSE) class of networks [2]. However, the reduction
of computational complexity comes with a tradeoff in terms of
model performance. Additionally, the huge parameter counts,
with the smaller CRUSE versions being even in the range of
the original FCRN (5.2 M) or higher, remain a problem for
memory-constrained applications.

Our work builds upon the idea of the FCRN and improves
the efficiency by reducing the number of filters and the kernel
size. This allows to increase the network’s depth, but requires
to introduce learnable skip connections and an only linear in-
crease (decrease) of filter numbers in the encoder (decoder),
thereby creating a smaller network that retains most of its per-
formance. Besides the efficient FCRN15, our core contribu-
tion in this paper is the efficient convolutional recurrent neural
network (EffCRN) topology which takes the design principles
”deeper and wider with smaller kernels” a step further. Ad-
ditionally, we reduce zero-padding of layer inputs and regain
good quality by allowing for non-convolutional layers in the
now sparse bottleneck. We compare the FCRN and EffCRN
variants to the strongest CRUSE networks.

The paper is structured as follows. Section 2 introduces the
evaluation framework and the network topologies used in our
experiments. Experimental setup, datasets, and training param-
eters are detailed in Section 3, followed by a discussion of our
experimental results. We conclude in Section 4.

2. Model Topologies

2.1. Evaluation Framework

Our models operate in the STFT domain. The spectral co-
efficients of clean speech Sℓ(k) and noise Dℓ(k) yield noisy
speech Yℓ(k) = Sℓ(k) +Dℓ(k). While ℓ denotes the frame in-
dex, k ∈ K = {0, 1, . . .K−1} is the frequency bin index of a
K-point DFT. The models predict a spectral mask Gℓ(k) ∈ C
which is the complex-valued representation of the real-valued
network output tensor Gℓ(k) ∈ R2. The clean speech estimate
is then Ŝℓ(k) = Gℓ(k) · Yℓ(k).
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Figure 1: The FCRN15 topology depicted using the EDBlock()
detailed in Fig. 2

2.2. FCRN Variants

The original FCRN [6] consists of 10 convolutional layers, 1
CLSTM and multiple up-/downsampling layers as well as 2 skip
connections that additively combine features from the encoder
and from the decoder. A more efficient version of this network
is the FCRN15 depicted in Fig. 1. It performs up- and down-
sampling with strided convolutions (as shown to be beneficial in
[19]) and increases the network’s depth to 15 layers. Addition-
ally, it enhances the additive skip connections with 1× 1 depth-
wise convolutions. Less and smaller filter-kernels enable its two
CLSTMs to be more efficient than the FCRN’s single CLSTM.
We depict the FCRN15 using an encoder-decoder block ED-
Block() which combines two convolutions from both encoder
and decoder and the learnable skip connections as shown in Fig.
2. It requires two input signals xenc/dec

in and produces two out-
put signals xenc/dec

out . The number of filter kernels is i ·F , where
i is the index of the EDBlock, N and V = 1 are the size of the
3D kernel along the frequency and the time axis, respectively,
and S = 2 denotes the stride. All employed non-depthwise con-
volutions possess kernels with a third axis covering all available
feature maps. The size of the compressed frequency axis is M ′,
while Cenc/dec

in describes the number of channels of each input.
Convolutional layers are denoted by Conv(i · F,N × V )/S ,
with S being an optional stride. DeConv(i · F,N × V )S
refers to a transposed convolution with the same parameter set.
Layer outputs have a size feature axis × time axis × feature
maps. In comparison to the well known CRUSE topology we
only downsample every other convolutional layer and we in-
crease the number of filters linearly instead of exponentially
with depth.

All models take an input M × 1 × Cin with M = K/2 +
1 + P and P being the number of zeros padded to the non-
redundant bins of the spectrum. We use the LeakyReLU ac-
tivation [20] for all but the last convolutional layer, which uses
linear activation. Instead of Gℓ(k), the bounded network output

G′
ℓ(k) = tanh(|Gℓ(k)|) · Gℓ(k)

|Gℓ(k)|
(1)

with constrained magnitude |G′
ℓ(k)| ∈ [0, 1] is then used for

masking by Ŝℓ(k) = G′
ℓ(k) ·Yℓ(k) [6]. CLSTM activations are

tanh and sigmoid as published in [21].

Conv(i·F,N × V )

Conv(i·F,N × V )/S

Conv(i·F,N × V )

DeConv(i·F,N × V )/S

1× 1

xenc
in xdec

out

xdec
inxenc

out

M ′ × 1 × Cenc
in

M ′ × 1 × i·F

M′
S × 1 × i·F M′

S × 1 × Cdec
in

M ′ × 1 × i·F

M ′ × 1 × i·F

EDBlock

Figure 2: Details of the i-th EDBlock(i · F,N × V )/S , con-
sisting of four convolutional layers, providing downsampling on
the encoder side and upsampling on the decoder side.

2.3. The New EffCRN Topologies

The new EffCRN23 topology can also be depicted using the
EDBlocks as shown in Figure 3 with an increased total depth of
now 23 layers (change D⃝). Compared to the FCRN15, the self-
evident approach for the EffCRN23 is to initially use fewer and
overall significantly smaller filter kernels (change F⃝). How-
ever, contrary to the CRUSE approach, we do not decrease net-
work depth to obtain the smaller network. Instead we increase
network depth, thereby allowing the network to compensate for
the drastic impact of reduced filter count and size on it’s ca-
pacity. The increased depth allows the network to find its own
powerful feature representation while maintaining overall com-
puting costs low. This is in line with literature which states
that an optimal ratio of depth to width exists for a given net-
work [18]. Our network performs further downsampling along
the frequency axis and achieves a significantly smaller feature
representation at the bottleneck between encoder and decoder,
where recurrent modelling takes place. Notably we use the
first CLSTM to sharply reduce the number of filters as well
for efficient processing. However, to keep output signal qual-
ity high, the resulting smaller representation not only allows
but requires non-convolutional recurrent bottleneck processing,
replacing the second CLSTM layer (change C⃝) with an efficient
non-convolutional GRU layer (change G⃝) without an excessive
increase of model parameters.

Additionally, we reduce computations by optimizing zero-
padding and apply it only when necessary (change P⃝). Sin-
gle entries are padded to even input sizes in the encoder di-
rectly before EDBlocks and the extra entries are removed at
the respective location in the decoder as shown in Fig. 3. The
EffCRN23lite is an even smaller version of the same topol-
ogy featuring fewer filters. Activations and output bounding (1)
are identical to the FCRN variants.

Please note that the changes from FCRN15 to EffCRN23
can be concisely stated by the introduced shorthand as:
EffCRN23 = FCRN15+ D⃝+ P⃝+ F⃝- C⃝+ G⃝.

2.4. CRUSE Network Baselines

We compare our work against the CRUSE networks [2], which
have been designed to be efficient. We choose the two
most powerful architectures from [2], namely CRUSE5 256-
2xLSTM1 (CRUSE5) and CRUSE4 128 1xGRU4 convskip

(CRUSE4) for re-implementation and reference. They feature
a symmetrical encoder-decoder structure consisting entirely of
convolutional blocks using a (3×2) kernel, whereas our models
process single frames (V = 1). In the bottleneck they feature
either 2 sequential LSTMs or 4 parallel GRU layers. The GRUs
were fed by flattening, then splitting the input data to those lay-
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Figure 3: The EffCRN23/EffCRN23lite topology using
the EDBlock detailed in Fig. 1. Mismatching dimensions are
matched by zero-padding (encoder) or removal (decoder).

ers. Since we focus on a network comparison, we employ the
CRUSE topologies detailed in [2], keeping layers and activa-
tions unchanged. Note that applying a linear output layer and
a bounding (1) as in the FCRN/EffCRN variants, performance
changes negligibly. We use the same input features as for our
networks and pad them to fulfill divisibility constraints imposed
by repeated downsampling.

3. Experiments and Discussion

3.1. Datasets and Parameter Settings

Experiments are performed on WSJ0 speech data [22] mixed
with noise from the DEMAND [23] and QUT [24] datasets for
training and development, whereas unseen noise data is taken
from the ETSI dataset [25] for the test set. SNR conditions are
0, 5 and 10 dB at an active speech level of −26 dBov before
mixing [26]. We employ 105 hours of training data, 10 hours
of validation data, and 1 hour of test data, with disjoint speakers
between any of the three datasets.

All audio data is sampled at 16 kHz. Framing is performed
with a square-root Hann window / frame length of 512 sam-
ples (equals DFT size K) and a 50% frameshift, allowing
#FLOPS/frame to be compared across all networks. Input and
output of all networks are real and imaginary parts of spectrum
and gain, respectively (Cin=Cout=2 channels).

While the baseline FCRN uses F=88, N=24 and M=260,
for the FCRN15, we choose F=32 and N=12. The input size
M=264 enables threefold downsampling by a factor of 2. For
the EffCRN23 topology we set the number of filters to F=27
and the kernel size N=4. Due to in-network padding we can
choose M=260. The EffCRN23lite uses F=17 for an even
smaller network and is otherwise identical to the EffCRN23.

3.2. Network Training

The models are trained using backpropagation-through-time
with a sequence (utterance) length of |Lu| = 100 frames, cor-
responding to 1.6 seconds, and a minibatch size of |B| = 16.
We use the Adam optimizer with standard parameter settings as
given in [27]. The learning rate is set to 10−4, which is dynami-
cally reduced by a factor of 0.6 upon 4 consecutive epochs with-
out improved validation loss. Training is stopped after the learn-
ing rate falls below 10−6, or after 10 consecutive epochs with-
out improved validation loss, or upon completing 70 epochs.
We train using a fixed seed that we do not optimize for. Train-
ing is performed on a single Nvidia GTX 1080 Ti. As
optimization target we use the state of the art loss function by
Braun and Tashev [28]

J =
1

|B|
∑

u∈B

1

|Lu|
∑

ℓ∈Lu

(1−α

|K|
∑

k∈K

∣∣|Ŝℓ(k)|c − |Sℓ(k)|c
∣∣2

+
α

|K|
∑

k∈K

∣∣|Ŝℓ(k)|cejφŝ,ℓ(k) − |Sℓ(k)|cejφs,ℓ(k)
∣∣2), (2)

with a compression factor c = 0.3 and α = 0.3 being a weight-
ing between complex and magnitude contribution. The set of
utterance indices per minibatch is denoted as B, while Lu de-
notes the set of frame indices in utterance u. The phase of the
enhanced and clean signal are denoted as φŝ,ℓ(k) and φs,ℓ(k),
respectively.

3.3. Metrics, Results, and Discussion

For the instrumental evaluation we use perceptual evaluation
of speech quality (PESQ) [29], ∆SNR = SNRout − SNRin

and DNSMOS [30]. Signal levels for SNR calculation are
determined following ITU-P.56 [26]. Parameter count and
#FLOPs/frame are reported based on our implementation in
Tensorflow 2.7 [31]. The evaluation results are averaged
over all unseen noise types and all SNRs of the test set and pre-
sented in Table 1.

The baseline FCRN [6] shows the best performance in
all metrics although at a high computational complexity of
1.5 GFLOPs/frame. The efficient CRUSE networks computa-
tionally operate at a significantly lower #FLOPs/frame, but in
our setup require even more parameters than the FCRN. The
FCRN15 scores close to the baseline in all reported measures,
being just 0.06 PESQ points and 0.19 dB in ∆SNR below,
but with only 16.8% of parameters and 8.2% of computational
complexity. The EffCRN23 has a slightly higher number of
parameters but still stays below 1 M and reduces computa-
tional complexity even further: With 41 MFLOPs/frame the
EffCRN23 requires only 3% of computational complexity of
the original FCRN at the price of 0.11 PESQ points and 0.38 dB
∆SNR. Downscaling the architecture to the EffCRN23lite
reduces computational complexity to 1.1% with still moderate
losses in PESQ (0.15) and ∆SNR (0.31 dB). DNSMOS results
are close, with the EffCRN23 being the best among the effi-
cient models.

Figs. 4 and 5 show an overview of all models’ perfor-
mance in terms of ∆SNR (◦) and PESQ (∗) over #FLOPS/frame
and parameter count while the respective DNSMOS values
can be seen in Table 1. In the efficient network regime, the
FCRN15 excels over the CRUSE5 in all reported metrics PESQ,
DNSMOS, ∆SNR, with lower parameter count (-98%) and
#FLOPS/frame (-32%). In the highly efficient network regime,
the EffCRN23lite excels over the CRUSE4 in all reported
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Figure 4: PESQ and ∆SNR over #FLOPs/frame. The
EffCRN23lite model excels over the CRUSE baselines in
PESQ, ∆SNR, and FLOPs/frame. Data from Table 1.

Table 1: Instrumental evaluation on the test set Dtest. Best
efficient network results are bold, second best underlined. Ab-
lations in bottom part out of competition.

Method #par. #FLOPS/ PESQ DNS ∆SNR
frame MOS [dB]

Noisy - - 2.30 - -
FCRN [6] 5.2 M 1500 M 3.63 3.16 14.57

FCRN15 875 K 123 M 3.57 3.12 14.38
EffCRN23 997 K 41 M 3.52 3.13 14.19
EffCRN23lite 396 K 16 M 3.48 3.09 14.26
CRUSE5 [2] 85 M 183 M 3.53 3.11 14.20
CRUSE4 [2] 7.2 M 20 M 3.38 3.03 14.06

FCRN15- C⃝ 777 K 112 M 3.54 3.12 14.30
FCRN15- C⃝+ G⃝ 7.4 M 125 M 3.51 3.13 14.17
FCRN15+ F⃝ 209 K 29 M 3.41 3.05 14.14
FCRN15+ F⃝+ D⃝+ P⃝ 665 K 41 M 3.44 3.04 14.07

metrics (-94% parameters and -20% #FLOPS/frame), showing
that our FCRN/EffCRN family of networks provides best-in-
class network topologies for speech enhancement.

Furthermore, Table 1 (lower half) and Table 2 show the im-
pact of our intermediate steps (- C⃝,+ G⃝,+ D⃝,+ P⃝,+ F⃝) on com-
putational complexity and model performance. Experiment-
ing with the recurrent layers of the FCRN15 shows a slight
loss of performance in case of both removal of the sec-
ond CLSTM (FCRN15- C⃝) and its replacement with a GRU
(FCRN15- C⃝+ G⃝). With 7.2 M parameters, however, the latter
is simply too large. As visible in Table 2, just increasing net-
work depth alone (FCRN15+ D⃝) does not reduce, but increase
both #parameters and #FLOPs/frame, as expected. Also shift-
ing padding from input data towards internal data representa-
tions of the network (FCRN15+ D⃝+ P⃝), #FLOPs/frame can be
reduced by 9 M, yet the network remains unacceptably large
(2.8 M). Beginning our modifications with just decreasing fil-
ter numbers and kernel sizes, leads to a very small and ef-
ficient network (FCRN15+ F⃝), however, coming with a dra-
matic performance loss across all measures compared to the
FCRN15, see Table 1 again. This motivates in a first step to
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Figure 5: PESQ and ∆SNR over #parameters. The
EffCRN23lite model excels over the CRUSE baselines w.r.t
PESQ, ∆SNR, and #parameters. Data from Table 1.

Table 2: Computational impact of topology modifications.

Method #par. #FLOPS/frame

FCRN15 875 K 123 M
FCRN15- C⃝ 777 K 112 M
FCRN15- C⃝+ G⃝ 7400 K 125 M
FCRN15+ D⃝ 2800 K 183 M
FCRN15+ D⃝+ P⃝ 2800 K 172 M
FCRN15+ F⃝ 209 K 29 M
FCRN15+ F⃝+ D⃝+ P⃝ 665 K 41 M

combine the deep network with smaller and fewer filter kernels
(FCRN15+ F⃝+ D⃝+ P⃝), which yields a still small (665 K) and
efficient (41 MFLOPS/frame) network. To regain performance
in a second step, we revisit the initial idea of modifying recur-
rent processing by replacing the FCRN15+ F⃝+ D⃝+ P⃝’s second
CLSTM with a GRU (FCRN15+ F⃝+ D⃝+ P⃝- C⃝+ G⃝) which is in
total then identical to the EffCRN23. Due to the small bot-
tleneck feature representation, this network manages to regain
0.08 PESQ-points and 0.09 DNSMOS-points while maintain-
ing very low complexity and staying below 1 M parameters.

4. Conclusions
In this paper, we have introduced the FCRN15 topology and
newly proposed the EffCRN23 class of networks for speech
enhancement. Significant reductions in model parameter count
as well as #FLOPs/frame compared to the FCRN baseline can
be achieved by smaller kernels and an only linear increase (de-
crease) of the number of filters in the encoder (decoder). This
allows then to increase the network depth, but requires learnable
skip connections and re-introduction of a non-convolutional
(GRU) layer in the sparse bottleneck. The efficient models
retain high performance with the EffCRN23lite requiring
7.6% of parameters and 1.1% of FLOPs/frame compared to
the baseline topology. We furthermore show that the FCRN15
and EffCRN23lite outperform the CRUSE5 and CRUSE4
networks, respectively, w.r.t. PESQ and DNSMOS and ∆SNR,
while requiring about 94% less parameters and about 20% less
#FLOPs/frame.
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