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Abstract
Automatic personality traits assessment (PTA) provides high-
level, intelligible predictive inputs for subsequent critical down-
stream tasks, such as job interview recommendations and men-
tal healthcare monitoring. In this work, we introduce a novel
Multimodal Personality Traits Assessment (MuPTA) corpus.
Our MuPTA corpus is unique in that it contains both sponta-
neous and read speech collected in the midly-resourced Russian
language. We present a novel audio-visual approach for PTA
that is used in order to set up baseline results on this corpus. We
further analyze the impact of both spontaneous and read speech
types on the PTA predictive performance. We find that for the
audio modality, the PTA predictive performances on short sig-
nals are almost equal regardless of the speech type, while PTA
using video modality is more accurate with spontaneous speech
compared to read one regardless of the signal length.
Index Terms: audio-visual resources, data annotation, multi-
modal paralinguistics, personality computing, big five traits

1. Introduction
Personality Computing (PC) is a multi-disciplinary field that
combines both psychology and computer science to analyze
human personality traits using various computational methods.
Personality traits are believed to be relatively stable over time,
and they are a key factor in shaping such human’s individual
patterns as thoughts, feelings, and behaviors [1]. Big Five
model describes these patterns and comprises five personal-
ity traits, namely, Openness to experience (OPE), Conscien-
tiousness (CON), Extraversion (EXT), Agreeableness (AGR),
Neuroticism/Non-Neuroticism (NEU/NNEU).

The importance of PC lies in its strong relation to high-risk
tasks such as job interview recommendation [2, 3], conversa-
tional interfaces [4] and mood disorders. Multiple studies in
medical and social sciences, including [5, 6], have reviewed
the association of personality traits with mood disorders, such
as major depressive disorder. This meta-analysis indicated a
strong connection between some mental illnesses and personal-
ity, of which all disorders had a configuration of low CON and
high NEU values.

To date, all collected corpora for personality traits assess-
ment (PTA) have exclusively included spontaneous speech only.
While spontaneous speech can reveal an emotional tone and
cognitive style through the analysis of word frequency and
speech patterns [7], read speech can also provide valuable in-
formation on human’s personality traits via non-verbal infor-
mation. For example, the same phrase can be pronounced in
a various way by different human beings with varying speech
prosody [8]. Additionally, both types of speech can exert
changes in human facial expressions and behavior.

In this paper, we consider PTA using read speech for the
first time. We also compare which type of speech allows better
assessment of the human personality. For that, we collected a
novel Multimodal Personality Traits Assessment (MuPTA) cor-
pus that contains both spontaneous and read speech.

2. Related work
2.1. Existing multimodal corpora

Automatic PTA can be performed by three communication
modalities: audio (prosodic, energy-based and spectral features,
voice quality, etc.) [9], visual (facial expressions, scene, aes-
thetic preference, etc.) [10, 11], and text (sentiment word and
its meaning, etc.) [12]. A brief description and comparison of
several existing multimodal corpora is presented in Table 1.

A review of multimodal corpora for PTA shows that: (1)
most of the existing corpora are in English; (2) all the corpora
were collected “in-the-Wild” or in office conditions; (3) corpora
contain spontaneous speech on a fixed topic; (4) the person-
ality traits annotation is made according to the results of self-
evaluation, familiar- or third-party-evaluation; (5) there is an
uneven gender distribution; (6) most of the speakers are young
people under 30 y.o.

Thus, our MuPTA corpus differs from others in that it con-
tains audio-visual recordings from 30 native Russian speakers
with a uniform distribution per gender and age, and also in-
cludes both spontaneous and read speech.

2.2. State-of-the-art approaches

Several competitions focused on developing approaches for
multimodal PTA were organized in prominent international
conferences, including INTERSPEECH 2012 [21], CVPR
2017 [22], and ICCV 2021 [23]. Two corpora, namely FI v2
(ChaLearn First Impressions V2) [3] and UDIVA [18], were
presented and used in the respective competitions, where com-
petitors using a common protocol developed and tested their ap-
proaches. Regardless of the corpus used, there are several trends
that have shown positive effects on the performance of the pro-
posed approach. In this study, we develop a baseline approach
using video (face) and audio modalities. Therefore, state-of-
the-art (SOTA) approaches are only considered for these two
modalities.

Audio modality. The use of log-Mel spectrograms [24, 25]
to extract speech features from a signal prevails over other
features such as hand-crafted features (e.g., openSMILE) [2,
26, 27], and raw audio signals [28]. Log-Mel spectrograms
are used coupled with 2D Convolutional Neural Networks
(CNN) [24, 25], Long Short-Term Memory Networks (LSTM)
[25] or Fully Connected Neural Networks (FCNN) [24].
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Table 1: Comparison of multimodal corpora: Fr – French, En –– English, Spa – Spanish, Cat – Catalan, Ge – German.

Corpus Language Evaluation # Subjects # Male/Female Age (Range/Mean) Duration (h)

ELEA [13] Fr, En Self 148 100/48 NA/25 10
Hire Me [14] En Self 62 17/45 NA/24 11
YouTube vlogs [15] En Third-party 442 208/234 [10,60]/NA 48
JOKER [16] Fr Self 37 23/14 [21,61]/35 8
MHHRI [17] En Self, familiar 18 9/9 NA 6
FI V2 [3] En Third-party 3060 1312/1748 [8,62]/24 41
MULTISIMO [9] En Self, familiar 49 24/25 [19,44]/30 4
UDIVA [18] Spa, Cat, En Self, familiar 147 81/66 [4,84]/31 90
RoomReader [19] En Self, familiar 118 51/65 [18,43]/24 8
DyCoDa [20] Ge Self 30 21/9 NA/22 10

MuPTA (ours) Ru Self 30 15/15 [19,86]/41 7
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Figure 1: Recording setup and sample frames from videos.

Video modality. Raw face images [2, 24, 25, 26, 27, 28]
are mainly used as features, which significantly dominate over
expert features such as image histograms [22], Local Gabor
Binary Patterns [2], etc. The raw face images are used as
input data for the 2D/3D/(2+1)D CNNs with the addition of
spatial-temporal models (such as LSTM [25, 27] and Trans-
former [26]), Extreme Learning Machines (ELM) [2] and
FCNN [28, 24].

It is challenging to determine best-performing unimodal
deep models for audio and video modalities because most pa-
pers present results after combining audio, video (face and
scene), and text modalities. Fusion of these modalities is usu-
ally done at the feature-level using Transformer [26, 24], Ran-
dom Forest [2], Extra Tree Regressor [28], or LSTM [25, 27].

3. MuPTA corpus
3.1. Data collection

The MuPTA corpus contains data of 30 native Russian speak-
ers. A comparison of the MuPTA corpus with existing multi-
modal corpora for PTA is presented in Table 1. The corpus was
recorded using three devices: two Apple iPhone XS Max smart-
phones and one Apple iPad Pro tablet. The audio data were col-
lected with a sampling frequency of 48 kHz, 16 bits per sample,
mono format. We use the following video parameters: 4K res-
olution (3840×2160 pixels), frames per second (FPS) is 60 (for
smartphones) and 30 (for tablet), the color coding is 24 bits per
pixel. The recording setup was similar to the study [29] and
sample video frames are shown in Figure 1. Each speaker com-
pleted three various tasks: (1) briefly introduced him/herself;
(2) described what is happening in two complicated pictures;
(3) read some scripted sentences out loudly (a list of 40 sen-
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Figure 2: Distribution of recordings’ duration. The blue line is
the distribution density.

tences was prepared for reading).
The phonetically balanced text presented in [30] was used

to select utterances for reading. This text was carefully curated
to investigate the speech patterns and variations of native Rus-
sian speakers with distinctive phonetic features. It allows de-
veloping a complete speech profile of the speaker. The text also
contains dialogs with interrogative, exclamatory and affirma-
tive sentences, that allow highlighting differences in personality
traits. The number of words in sentences ranges from 1 to 22,
the average number of words is 8 with a standard deviation (std)
of 5. In total, 43 utterances were recorded from each speaker: 3
spontaneous (tasks 1 and 2, the latter having two sub-tasks) and
40 scripted sentences (task 3). Note that PTA by read speech
was not studied before.

Figure 2 shows the duration distribution of the recorded
phrases. The duration of spontaneous speech is at least 4 sec.
The duration of read speech varies from 0.4 to 11.5 sec, 2.5 sec
in average. In total, MuPTA consists of 4.1 hours of sponta-
neous speech and 3.3 hours of read one.

The data of each informant were recorded continuously by
all three devices, so we have split the recorded files into phrases.
Firstly, we annotated the start and end points of speech activity
using Adobe Audition. We then synchronized the recordings
of all three devices using Adobe Premier Pro. Finally, we have
split all the recordings using obtained speech timestamps and
shifts for each channel.

3.2. Data annotation

Each speaker (informant) have filled in a self-evaluation ques-
tionnaire of 60 questions [31]. This is a standard questionnaire
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Figure 3: Pipeline of the proposed audio-visual approach for personality traits assessment. MLF means mid-level feature fusion. Si –
audio/video segment, i = 1, ..., n, n - the number of 2-sec segments with 1-sec steps in the audio-visual signal.

used to estimate big five traits. Adapted versions of question-
naires for Russian are presented in [32]. All questions were
Likert type with scores in the range from 1 to 5. 60 questions
evenly covered five traits, i.e., there were 12 questions for each
trait. Hence, the maximum total score that can be obtained for
one trait is 60. We normalized all the scores into [0, 1] range.
Moreover, since this questionnaire provides the scores for the
NEU negative trait, we have converted negative scores into pos-
itive ones (as in [3]) and got the NNEU positive trait. It al-
lows scaling all the traits into a positive scale. Obviously, a
self-evaluation can be biased, so in the future we are going to
annotate the data by third-party evaluations as well, as in [15].

Each informant has provided the following own metadata:
birthday, gender, marital status, education, and occupation. All
the informants were asked to complete an informed consent
form prior to data collection. Such metadata can be used for
PTA as in [18]. The same metadata can also be used for fair-
ness analysis and bias mitigation as well [3].

The collected data were partitioned into three subsets:
Train (18 speakers, 11610 utterances), Development (6 speak-
ers, 3870 utterances) and Test (6 speakers, 3870 utterances).
This speaker-independent partitioning was mode taking into ac-
count balanced gender and age distributions.

4. Proposed approach
The pipeline of the proposed audio-visual approach for PTA us-
ing a mid-level feature fusion is shown in Figure 3. The ap-
proach integrates audio and video subsystems. The Video sys-
tem receives downsampled frames (5 FPS) as an input. Mid-
level NN-based features for both systems are extracted from 2
sec segments with 1 sec steps. For each set of mid-level NN-
based features, we calculate both mean and std values, concate-
nate and pass them into a FCNN in order to estimate personality
traits scores for the whole clip. In [18, 33], chunking was done
with 1.5 and 2.5 sec segments for the PTA task. We chose a
segment length of 2 sec, because the most utterances of read
speech are between 2 and 2.5 sec.

We trained all the models using the Adam optimizer for 100
epochs and the Cosine Annealing Learning Schedule [34] with
5-rate restart cycles. Such hyper-parameters as the number of
layers and units in them, a dropout probability, and a learning
rate are selected experimentally by grid search.

Our approach differs from other SOTA approaches in that
we: (1) downsample frames and segment the clips; (2) fine-tune
two models to extract mid-level features at the segment-level;
(3) use feature-level fusion at the clip-level to calculate the pre-
dictions. This strategy reduces the number of model parameters,

making our approach suitable for real-time applications.

4.1. Audio system

The log-Mel spectrograms with 128 Mel filter banks were ex-
tracted by the open-source library Librosa [35] from each audio
file. The size of the feature matrix for a 2-sec audio segment is
128×173. The features are padded with mean values in the case
an audio segment is shorter than 2 sec. The extracted features
were converted into images, resized to 224×224 pixels and re-
peated three times. So, we use input vectors of 224×224×3,
which are then normalized to the range [0, 1].

We apply the pre-trained VGG-16 model [36] for extract-
ing deep features from log-Mel spectrograms. This model has
been successfully used in the PTA task [24, 25]. FCNN is used
for the final regression task; it consists of three fully connected
layers (FCL) with 512, 256, and 5 neurons, as well as a linear
activation function for the last layer. In the training process, the
learning rate ranged from 5e-5 to 5e-6.

4.2. Video system

We apply the Face Mesh model [37] from the MediaPipe library
for detecting facial regions and 468 3D facial landmarks. We
chose this model because of the richness of facial landmarks.
Also, since the frame rates of the videos are different, each
video file is downsampled to 5 FPS to keep the same process-
ing conditions for LSTM networks. For a 2-sec video segment,
the number of frames is 10. The last frame is repeated as many
times as necessary if the video segment is shorter than 2 sec.

It is known that personality traits are determined by the
sequence of emotional and behavioral reactions of different
people to the same stimuli [38]. Inspired by this fact and
the research [39], we apply the open-source Emo-AffectNet
model [40] for extracting 512 deep emotional facial features.
This model’s performance is confirmed in the emotion recogni-
tion task recently [40]. The size of the feature matrix for a 2-sec
video segment is 10×512.

A single-hidden-layer LSTM model is used to extract mid-
level features from the videos. This model comprises one
LSTM layer with 1024 units and one FCL with 5 neurons with a
linear activation function. We trained this model with a learning
rate ranging from 5e-3 to 5e-4.

4.3. Audio-visual system

The duration of audio-visual clips differs in the MuPTA corpus.
For example, if the duration of a clip is 15 sec, it amounts to
16 (overlapping) segments. Hence we get 16×F feature ma-

4051



Table 2: Results of the proposed systems obtained on the
MuPTA corpus. A, V, AV denote audio, video, and audio-visual
systems (S), respectively.

TRAIT-WISE ACC AVERAGE

S OPE CON EXT AGR NNEU ACC CCC

Development set

A .946 .905 .895 .852 .895 .903 .650
V .947 .914 .909 .864 .906 .908 .626
AV .947 .907 .889 .857 .914 .903 .672

Test set

A .936 .921 .849 .901 .869 .895 .574
V .936 .931 .841 .902 .868 .895 .523
AV .935 .915 .876 .898 .871 .899 .614

trix for the clip, where F is the number of mid-level features
that varies depending on the systems. Then we aggregate mean
and std values (summarizing functionals) of these features per
clip. Thus, we extract feature vectors of 256×2 components for
the audio system, and 1024×2 – for the video one. These vec-
tors are concatenated into a joint vector and used as an input for
FCL. Unlike SOTA approaches [2, 24, 25, 26, 27, 28], we per-
form feature-level fusion using a single FCL, which is a simple
and effective way to fuse the modalities.

5. Experimental results and discussion
We evaluated the proposed approach for PTA using standard
performance measures: Accuracy (ACC), which is calculated
as 1 - Mean Absolute Error (MAE) as in [3], and Concordance
Correlation Coefficient (CCC). While ACC reflects the error be-
tween predicted and ground truth scores, CCC indicates a cor-
relation between them. CCC is more robust compared to the
Pearson’s Correlation Coefficient (PCC), as it also considers the
difference in means [41]:

CCC =
2 · σt,p

σ2
t + σ2

p + (µt − µp)2
, (1)

where µt and µp denote the averaged ground truth and predicted
scores for all test clips, respectively; σt and σp – the respective
standard deviations; σt,p – the covariance between t and p.

Table 3: Comparison of the CCC of systems in the case of spon-
taneous (SP) and read (RE) speech type (ST), as well as segment
duration (seconds).

S ST 2 5 10 20 30 50 Whole

A SP .575 .578 .575 .575 .574 .574 .574
RE .575 .574 .574 – – – .574

V SP .518 .529 .530 .539 .538 .537 .536
RE .504 .522 .522 – – – .522

AV SP .601 .618 .619 .632 .631 .628 .628
RE .588 .612 .613 – – – .613

The results obtained on the MuPTA corpus are presented in
Table 2, which indicates that in the Development set, AGR trait
is the most difficult to predict, whereas in the Test set, EXT and

NNEU are the least performing dimensions. This is because
the distribution of ground truth scores for these traits in the De-
velopment and Test sets differs from that in the Train set. The
ACC measure shows that the visual system outperforms the au-
dio system. However, according to the CCC measure, the audio
predicted scores are more reliable than the visual ones. Com-
bining both systems leads to an absolute increase of 2.2% in
CCC value (.650 vs. .672) for the Development set and 4.4%
(.574 vs. .614) for the Test set. It demonstrates that PTA is
more reliable when the audio and video systems are fused.

The performance measures for spontaneous and read
speech at various segment durations are compared in Table 3.
To present the measures, we cut the clips to {2-50} sec, or use
the whole clip. There are no read utterances longer than 10
sec in MuPTA. The audio system shows almost no difference in
performance between two speech types at short signals (2 sec).

Unlike the audio system, the visual one shows better CCC
performance with spontaneous speech compared to read speech
regardless of the signal length. The best CCC performance is
achieved with a signal length of 20 sec. Despite the fact that
the audio system outperforms the visual one at all signal dura-
tions, the audio-visual system shows a bias towards the video
modality and displays a similar performance pattern.

Thus, we can draw the following conclusions: (1) read
speech is informative in the case of audio system, unlike spon-
taneous speech, that is more informative for video and multi-
modal systems; (2) the optimal signal length for multimodal
PTA is 20 sec, in which case the audio system works well; the
video and multimodal systems reach their best performances.

It should be noted that our proposed approach works in real-
time. Processing a 15.3 sec clip on a CPU (using Intel i9) takes
9.1 sec with a frame resolution of 3840×2160, of which 7.9
sec are needed to process video data. With a change in frame
resolution to 1280×720, the processing time reduces to 3.8 sec.

6. Conclusions
In this paper, we presented the Multimodal Personality Traits
Assessment (MuPTA) corpus, which is the first corpus that con-
tains both spontaneous and read audio-visual speech. In addi-
tion, we propose a real-time multimodal approach for person-
ality computing, by which we compared which type of speech
allows better assessment of the human’s personality traits. As a
result, we find that audio modality outperforms video modality
in terms of performance, while multimodal fusion gives the best
performance. In addition, the optimal signal length for video
and multimodal systems is observed to be 20 sec, while for au-
dio it is shorter (5 sec). Lastly, for video and multimodal sys-
tems, spontaneous speech is found to suit the PTA task better,
while both speech types of a short length are almost equally
performing for the audio modality. Both the source code of our
approach and the MuPTA corpus can be found at the web-page1.

In the future, we plan to improve our approach by incorpo-
rating modalities like text, video (scene), and metadata. More-
over, we plan to conduct a large scale cross-corpus and multi-
lingual research on personality traits assessment.
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