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Abstract
Empirical studies report a strong correlation between pronun-
ciation proficiency scores and phonetic errors in non-native
speech assessments of human evaluators. However, the exist-
ing system of computer-assisted pronunciation training (CAPT)
regards automatic pronunciation assessment (APA) and mis-
pronunciation detection and diagnosis (MDD) as independent
and focuses on individual performance improvement. Moti-
vated by the correlation between two tasks, we propose a novel
architecture that jointly tackles APA and MDD using CTC
and cross-entropy criteria with a multi-task learning scheme
to benefit both tasks. To leverage additional knowledge trans-
fer, Wav2Vec2-robust finetuned on TIMIT is used for the joint
optimization. The integrated model significantly outperforms
single-task learning, with a mean of 0.057 PCC increase for
APA and 0.004 F1 increase for MDD on Speechocean762,
which reveals that proficiency scores and phonetic errors are
correlated for both human and model assessments.
Index Terms: computer-assisted pronunciation training, multi-
task learning, mispronunciation detection and diagnosis, auto-
matic pronunciation assessment, transfer learning

1. Introduction
The incorporation of speech technology into education has con-
sistently grown and has brought meaningful results [1, 2]. The
field of computer-assisted pronunciation training (CAPT) has
similarly made rapid progress, with the spread of internet-
based applications and the significant development of auto-
matic speech recognition (ASR) technology. The CAPT system
serves as a powerful tool for non-native learners, as it provides
customized feedback at a low cost. The minimized time and
place constraints typical in traditional instructor-based learning
bring another advantage to CAPT [3].

The CAPT system generally consists of two major tasks,
automatic pronunciation assessment (APA) and mispronunci-
ation detection and diagnosis (MDD). APA task can be seen
as a speech classification task, that aims to provide pronun-
ciation proficiency scores highly correlated with those of hu-
man evaluators [4, 5, 6, 7, 8, 9]. The scores reflect different
aspects of scoring standards (accentedness, fluency, compre-
hensibility) [10] or different granularity (phones, words, sen-
tences) [11]. MDD task on the other hand is a non-native phone
recognition task. It aims to correctly classify and diagnose
the realized phones into correct pronunciations and mispronun-
ciations, by comparing them with the annotated phone tran-
scriptions of human experts and the canonical phone sequences
[12, 13, 14, 15, 16, 17, 18]. As both aim to assess non-native
(L2) speech, the two tasks inevitably share similar methodolo-
gies, including the usage of Goodness of Pronunciation (GOP)

measure [4, 5, 6, 7, 12], hand-crafted acoustic features [5, 7, 14],
the usage of native (L1) data [9, 13, 14, 16, 17, 18], to the recent
pre-trained self-supervised learning model [7, 8, 9, 15, 16, 18].

Indeed, empirical studies report that there exists a distinct
correlation between pronunciation proficiency scores and mis-
pronunciations that are annotated by human evaluators for non-
native speech assessments. Phonetic errors showed a strong cor-
relation with not only overall assessment such as comprehensi-
bility scores of L2 German [10] and holistic scores of L2 Ko-
rean [19], but also prosodic assessment such as fluency scores of
L2 Mandarin [20], and accent scores of L2 English [21]. This
applied to both cases where mispronunciation annotators and
score annotators were different [10, 20, 21] or the same [19].
This provides strong linguistic motivation to leverage the corre-
lation between APA and MDD tasks to benefit each other.

However, the current CAPT system has treated the two
tasks as independent and separate. One reason lies in the pro-
posals focusing on improving the model performance on differ-
ent benchmark datasets for the respective task. L2-arctic [22] is
often used to test MDD performance, while Speechocean762
[11] is used for APA, as in [6, 7] that propose multi-aspect
multi-granular APA, and [8] that adopt self-supervised learn-
ing for holistic/fluency/prosodic APA. Other studies use Spee-
chocean762 only as an MDD benchmark, including [16] that
shows their data augmentation method improves MDD perfor-
mance on out-of-domain Speechocean762 test set, and [18] that
adopts a non-autoregressive framework for MDD.

A few studies that mention both tasks still regard one as
auxiliary or separate. [4] regards mispronunciation detection
as an auxiliary, binary phone-level scoring in multi-granular
APA. [9] utilizes native(-like) data and the matching canoni-
cal phones for auxiliary CTC training to assist holistic/accuracy
APA. Phone-level APA is performed in [17] along with MDD,
but as two separate tasks that can be achieved with respective
APA and MDD datasets for fine-tuning. However, given the
significant linguistic correlation between the two tasks, an in-
tegrated model of the two tasks is expected to improve perfor-
mances on both tasks.

This paper presents for the first time a novel architecture
that jointly trains pronunciation assessment task and mispro-
nunciation detection and diagnosis task via a multi-task learning
perspective, to leverage their correlation. To further enhance the
acoustic representation of the model, we adopt transfer learning
to fine-tune a self-supervised learning model on phone recogni-
tion before multi-task learning. We contribute by verifying that
the joint model shows distinct improvement on both APA and
MDD tasks, compared to the respective single-task learning on
Speechocean762. Additional analyses show how different loss
weights, self-supervised learning model, and transfer learning
dataset influence the joint model. Moreover, correlation analy-
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Figure 1: The overview of our proposed method. (a) the training process, (b) the architecture of the joint model for APA and MDD.

sis on proficiency scores and phonetic errors for both model pre-
dictions and Speechocean762 human annotations reveals that
the joint model leveraged their correlation to gain performance
improvements, which proves the importance of this study.

2. Proposed method
The proposed method is composed of two steps: (1) transfer
learning with an auxiliary fine-tuning of self-supervised learn-
ing model on phone recognition and the main (2) multi-task
learning of APA and MDD as shown in Fig. 1 (a). We release
the source code for reproducibility. 1

2.1. Transfer learning

Transfer learning (TL) takes a resource-rich, huge model from
another domain to adapt to the target domain. As the CAPT
domain suffers from the inherent problem of data scarcity, we
utilize a self-supervised learning (SSL) model pre-trained with
a vast amount of unlabeled data for the backbone model to lever-
age its robustness. We explore four different SSL models with
the same 300 million parameters but with different datasets and
learning schemes:
• Wav2Vec2-robust [23]: Trained with 63K hrs. of English,

the model consists of a convolutional feature encoder, a
Transformer context network, and a quantization module.

• Wav2Vec2-XLS-R [24]: A multilingual model trained with
436K hrs. of data from 128 languages, it has the same archi-
tecture as the robust model.

• HuBERT [25]: Trained with 60K hrs. of English, the archi-
tecture is based on Wav2Vec2. Iterative K-means clustering
is used for masked prediction.

• WavLM [26]: Trained with 94K hrs. of English, the model
extends HuBERT. Masked speech denoising and additional
gated relative position bias are implemented.

We additionally fine-tune the SSL model on phone recog-
nition before multi-task learning to see if the extra fine-tuning
can enhance the model with better acoustic representation. For
fine-tuning, a fully-connected layer (language model head) is
added on top of the Transformer network of the SSL model to
train with Connectionist Temporal Classification (CTC) loss.

2.2. Multi-task learning

Multi-task learning (MTL) simultaneously trains tasks with dif-
ferent objective functions using a shared model. With the in-

1https://github.com/rhss10/joint-apa-mdd-mtl

creased information, downstream speech tasks including emo-
tion recognition [27] or dysarthria assessment [28] have lever-
aged the framework to gain more generalized models. Moti-
vated by its effectiveness in various speech domains, we utilize
MTL to jointly train APA and MDD. With the joint optimiza-
tion, we expect the model to learn the correlation between the
output pronunciation scores and phone sequences to gain per-
formance increases than respective single-task learning (STL).

Fig. 1 (b) shows the architecture of the joint model. The
model utilizes the SSL encoder and its weights. For the raw
audio input x ∈ RL with length L, the SSL encoder out-
puts T sequences of D dimensional latent speech representa-
tion h ∈ RT×D . For the APA task, the latent speech represen-
tation goes through an additional bidirectional long short-term
memory (BLSTM) layer shared among four pronunciation as-
sessment tasks to capture the information shared between as-
sessments. The model yields h̄ ∈ RT×H where H is the size
of the output hidden dimension. The output representation is
then passed to each assessment head which consists of a fully
connected layer and an average pooling over time dimension,
to make ŷ{acc,flu,pros,tot} ∈ RC , which are logits of accuracy,
fluency, prosodic, and total score, respectively where C is the
number of labels. Logits of each aspect are stacked to make fi-
nal APA logits ŷ ∈ RC×4 to be optimized using cross-entropy
criteria (LAPA) with the ground-truth score labels after a soft-
max operation. For the MDD task, the latent speech represen-
tation h passes the same fully connected layer used in phone
recognition fine-tuning to leverage the fine-tuned weights. The
output logit ẑ ∈ RT×V is optimized using CTC loss (LMDD)
with the ground-truth realized phone annotations after a soft-
max operation, where V is the size of the vocabulary.

The classification heads and the language model head are
then optimized using the joint loss LCAPT , which is a combi-
nation of LAPA and LMDD:

LCAPT = αLAPA + βLMDD (1)

where α and β are used to balance the two losses. α is
chosen from the set of α ∈ {0.1, 0.25, 0.5, 1} and β is fixed
to 1.0. This is to adjust the weights on LAPA as LMDD takes
advantage of auxiliary fine-tuning and thus optimizes faster.

3. Experiments
3.1. Datasets

Experiments are conducted using three public datasets, TIMIT
[29], L2-arctic [22] for the auxiliary fine-tuning on phone
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Table 1: Experiment results w.r.t transfer learning and multi-task learning. - refers to tasks not performed for STL.

Model Pronunciation Scores (PCC) PER Correct Pronunciations Mispronunciations

Accuracy Fluency Prosodic Total Precision Recall F1 Precision Recall F1

APA-SSL 0.609 0.652 0.650 0.633 - - - - - - -
MDD-SSL - - - - 9.89% 0.997 0.928 0.961 0.267 0.914 0.413

Joint-CAPT-SSL 0.714 0.763 0.767 0.732 9.91% 0.997 0.929 0.962 0.268 0.914 0.415

APA-L1 0.629 0.738 0.733 0.680 - - - - - - -
MDD-L1 - - - - 9.90% 0.997 0.927 0.961 0.265 0.916 0.410

Joint-CAPT-L1 0.719 0.775 0.773 0.743 9.93% 0.997 0.928 0.962 0.267 0.914 0.414

Table 2: Model performances compared w.r.t multi-task learning loss weight. α = 0.25 is the baseline.

Loss Weight Pronunciation Scores (PCC) PER Correct Pronunciations Mispronunciations

Accuracy Fluency Prosodic Total Precision Recall F1 Precision Recall F1

α = 0.25 0.719 0.775 0.773 0.743 9.93% 0.997 0.928 0.962 0.267 0.914 0.414

α = 0.1 0.700 0.776 0.771 0.737 10.00% 0.997 0.927 0.961 0.262 0.909 0.407
α = 0.5 0.724 0.763 0.765 0.741 9.94% 0.997 0.928 0.962 0.269 0.916 0.415
α = 1.0 0.718 0.768 0.764 0.737 10.10% 0.997 0.927 0.961 0.265 0.912 0.411

recognition, and Speechocean762 [11] for the joint APA and
MDD training. TIMIT is a native speech dataset that contains
recordings of 8 US English dialects and is phonetically tran-
scribed with 61 phone set. L2-arctic v5.0 is a non-native speech
dataset that contains English of 6 L1 backgrounds transcribed
with 40 phone set. For fine-tuning, we use the original TIMIT
train split, and the suggested L2-arctic train split from [13, 17].

SpeechOcean762 contains non-native English recordings of
Mandarin speakers, of which we use the original train/test split.
For APA task, we use four aspects of sentence scores, accu-
racy, fluency, prosodic, and total, that range from 0-10. Spee-
chocean762 provides an extra mispronunciation transcription
for inaccurate phones using 46 phone set, 39 phones follow-
ing CMUDict [30], <unk> for unknown phones, and 6 L2
phones. This realized phone transcription is used for MDD
task. Roughly 4% and 3% of the train and test set phone an-
notations are mispronunciations. Out of the mispronunciations,
<unk> takes up to 26% and 25%, respectively. The phone sets
of TIMIT and L2-arctic were mapped into CMUDict to be com-
bined with SpeechOcean762 phone set and were used for both
phone recognition fine-tuning and multi-task learning.

3.2. Evaluation metrics

The APA performance is measured using Pearson Correlation
Coefficient (PCC) between model prediction scores and hu-
man annotated scores. For MDD performance, Precision, Re-
call, and F1 scores are calculated according to the metrics
used in [31, 32] and are reported for both correct pronuncia-
tions (CP) and mispronunciations (MP) following [18]. True
Acceptance (TA) refers to predicting CP as CP, False Accep-
tance (FA) refers to predicting MP as CP, True Rejection (TR)
refers to predicting MP as MP, and False Rejection (FR) refers
to predicting CP as MP. As metrics are reported for both CP
and MP, classes used for metrics contradict each other. For
example, True Positive (TP) corresponds to TA for CP and
TR for MP. This applies to False Positive (FP), True Negative
(TN), and False Negative (FN) as well, where Precision =
TP/(TP + FP ), Recall = TP/(TP + FN), F1 =
2× Precision×Recall/(Precision+Recall).

3.3. Implementation details and baseline

For all procedures, models had the feature encoder frozen and
were trained with 8 batch sizes, an AdamW optimizer, a train-
ing epoch of 100, and a linear scheduler with a learning rate of
1e-4 and a warm-up ratio of 0.1. Pre-trained SSL models were
implemented using HuggingFace [33]. For multi-task learning,
all the experiments were repeated for 3 trials with different ran-
dom seeds and are reported with the mean value. The BLSTM
layer was fixed to 128 hidden dimensions.

For the main results, we utilize Wav2Vec2-robust as the
backbone model, TIMIT (L1) as the phone recognition fine-
tuning dataset, and α=0.25 for the joint loss weight. For the
joint model without additional fine-tuning, α was set to 0.0 for
the first 50 epochs, as CTC loss is much bigger than cross-
entropy loss without fine-tuning. Section 3.4 shows the main re-
sults of the proposed method. Section 4.1 tries on different loss
weights, backbone SSL model (XLS-R, HuBERT, WavLM),
and dataset (L2-arctic (L2), a sum of TIMIT/L2-arctic (MIX))
to compare their influence on model performance.

3.4. Experiment results

Table 1 demonstrates the experiment results with regard to
transfer learning, and multi-task learning of APA and MDD.
The proposed joint model (Joint-CAPT [α = 0.25, β = 1.0])
is compared to respective STL models (APA [α = 1.0, β =
0.0], MDD [α = 0.0, β = 1.0]), for both raw self-supervised
model (SSL) and fine-tuned model (L1). First, multi-task learn-
ing greatly improves APA performance, with Joint-CAPT-SSL
and Joint-CAPT-L1 both having higher PCC for all scores than
the respective APA-SSL and APA-L1, with an average of 0.108
and 0.057 increase. The average PCC of Joint-CAPT-SSL is
even higher than APA-L1 which leverages the extra knowledge
by a mean of 0.049. Second, although more subtle than APA
performance increase, multi-task learning also improves MDD
performance. For both correct pronunciations and mispronun-
ciations, Joint-CAPT-SSL (0.962, 0.415) and Joint-CAPT-L1
(0.962, 0.414) have higher F1 scores than the respective MDD-
SSL and MDD-L1. The performance gain was achieved from
higher recall for CP, and higher precision for MP. Altogether,
this proves the effectiveness of jointly training APA and MDD.
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Table 3: Model performances compared w.r.t backbone SSL model and dataset used for fine-tuning. Robust, L1 is the baseline.

Transferred
Model

Pronunciation Scores (PCC) PER Correct Pronunciations Mispronunciations

Accuracy Fluency Prosodic Total Precision Recall F1 Precision Recall F1

Robust, L1 0.719 0.775 0.773 0.743 9.93% 0.997 0.928 0.962 0.267 0.914 0.414

XLS-R, L1 0.685 0.759 0.756 0.711 13.49% 0.998 0.895 0.943 0.203 0.936 0.334
HuBERT, L1 0.694 0.763 0.760 0.730 10.12% 0.997 0.927 0.961 0.261 0.901 0.405
WavLM, L1 0.704 0.766 0.757 0.728 9.42% 0.997 0.932 0.963 0.273 0.886 0.418

Robust, L2 0.710 0.773 0.767 0.734 10.06% 0.997 0.927 0.961 0.264 0.914 0.409
Robust, MIX 0.707 0.769 0.765 0.729 9.95% 0.997 0.928 0.961 0.265 0.908 0.410

Lastly, similar to multi-task learning, auxiliary phone recogni-
tion fine-tuning significantly improves APA performance, for
both APA-L1 and Joint-CAPT-L1. However, it slightly reduces
MDD performance as F1 scores were reduced for both MDD-
L1 and Joint-CAPT-L1, caused by lower precision of MD. The
mismatch between the transferred L1 and the target L2 data may
be the cause, as dialectal differences of TIMIT may be misled
to mispronunciations.

4. Discussion
4.1. Analysis on loss weight and transferred model

We additionally explore the influence of (1) loss weight, and (2)
transferred model on model performances. First for α, Table 2
shows that smaller weights on LAPA (0.1, 0.25) help the model
achieve better results on fluency and prosodic correlation. In-
creasing the weights (0.25, 0.5) results in better accuracy and
total scores, with better MDD performances as well. Yet, the
performance decreases as the weight gets too big. (1.0) Over-
all, α = 0.25 achieved the most decent performance for joint
APA/MDD.

For the SSL model, XLS-R consistently showed the weak-
est performance in both APA and MDD as in Table 3. As XLS-
R had been pre-trained with multi-lingual data, the model may
not have been fit for the scope. WavLM surpassed the baseline
model performance on F1 scores. As HuBERT which had a
similar amount of pre-training data showed conflicting results,
the MDD performance improvement of WavLM may lie in its
learning scheme. For the dataset, using L1 for transfer learning
outperformed both L2 and MIX. This is an interesting finding
given that L2 has more similar acoustic characteristics to the
target Speechocean762 data, and the mix of the two has a larger
amount of data.

4.2. Correlation analysis of human and model assessments

To explore how the model leverages the correlation between
proficiency scores and phonetic errors, correlation analysis was
conducted using PCC for both human evaluators and predic-
tions of the proposed Joint-CAPT-L1. The test set of Spee-
chocean762 was used for analysis. The results are plotted using
linear regression in Fig. 2. For both plots, accuracy, fluency,
prosodic, and total score all showed a correlation with mispro-
nunciations and were statistically significant (p<.001).

Specifically, for human evaluators, the total score had
the highest negative correlation with mispronunciations (r=-
0.656), followed by accuracy (r=-0.624), fluency (r=-0.606),
and prosodic (r=-0.593). This suggests that the human asses-
sors of Speechocean762 were influenced by phone errors when
grading the scores for all aspects, which complies with the find-
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Figure 2: Correlation between proficiency scores of four as-
pects and the number of mispronunciations are plotted for both
human evaluations and model predictions.

ings of previous studies. Interestingly, model predictions also
showed a similar pattern where accuracy (r=-0.541) and to-
tal score (r=-0.534) had the highest negative correlation with
mispronunciation, followed by prosodic (r=-0.476) and fluency
(r=-0.461). This also corresponds to the performance results of
Joint-CAPT-L1, where accuracy and total score gained the most
performance increase compared to APA-L1. In other words, the
statistical analysis provides evidence that the integrated model
leveraged the correlation between APA and MDD tasks to gain
performance improvement.

5. Conclusions
This study presents a novel architecture that jointly trains auto-
matic pronunciation assessment and mispronunciation detection
and diagnosis with a multi-task learning perspective, motivated
by the high linguistic correlation between proficiency scores
and phonetic errors. The significant performance improvement
of the proposed joint model over single-task APA and MDD on
Speechocean762 proves that the correlation between two tasks
can benefit each other, which is further supported by correlation
analysis. The proposed model not only conforms to the linguis-
tic mechanism of non-native speech assessment, but shows its
usefulness in practical assessment scenarios where learners are
graded in various aspects with a single utterance.
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