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Abstract
Large speech models are rapidly gaining traction in research
community. As a result, model compression has become an
important topic, so that these models can fit in memory and
be served with reduced cost. Practical approaches for com-
pressing automatic speech recognition (ASR) model use int8 or
int4 weight quantization. In this study, we propose to develop
2-bit ASR models. We explore the impact of symmetric and
asymmetric quantization combined with sub-channel quantiza-
tion and clipping on both LibriSpeech dataset and large-scale
training data. We obtain a lossless 2-bit Conformer model with
32% model size reduction when compared to state of the art
4-bit Conformer model for LibriSpeech. With the large-scale
training data, we obtain a 2-bit Conformer model with over 40%
model size reduction against the 4-bit version at the cost of 17%
relative word error rate degradation.
Index Terms: speech recognition, model quantization, low-bit
quantization

1. Introduction
Modern automatic speech recognition models are mostly based
on an end-to-end approach [1, 2, 3, 4]. One of the popular meth-
ods to improve accuracy of such models is to increase model
size [5]. With the growing success and size of these models,
compressing them with neutral quality impact is becoming an
important research topic.

The most popular approaches for compressing neural net-
works are pruning [6, 7], knowledge distillation [8], and quan-
tization [9, 10]. In this paper we are focused on quantization as
the most straight forward approach. It can be applied on acti-
vations and weights. If both activations and weights are quan-
tized [11], then it reduces memory footprint and can give speed
up due to memory footprint reduction and low bits multiplica-
tion (the latter one requires hardware support). If quantization
is applied only on weights then it reduces memory footprint and
can provide speed up due to lower memory usage. It also does
not require special hardware support for low bits numbers mul-
tiplication. That is why in this work we are focused on weights
only quantization.

Quantization methods can be divided into post training
quantization (PTQ) and quantization aware training (QAT).
PTQ is successfully applied on speech applications [12, 13] be-
cause it is easy to use (e.g. with TFLite [14]) and it works well
at int8 precision. PTQ with lower bits has limited support in
TFLite [14] and can have significant accuracy degradation with
no or minimal tools to address it. Hence, we are focusing on
quantization aware training. QAT can be applied after model
is pre-trained (i.e., fine-tuning stage), or it can be applied from
the beginning of the model training (i.e., QAT training from
scratch). In this work we are focused on training from scratch,

although our approach can be used for fine-tuning too. Quanti-
zation of a tensor can be done with dynamic quantization [15] or
static quantization [16, 17]. In this work we are focused on dy-
namic quantization because it does not require additional vari-
ables during training and it works well for speech applications
e.g. [18]. Tensor can be quantized using non-uniform quantiza-
tion (e.g., with float8 [19]). Not all hardware supports it, so in
this work we are focused on uniform 2-bit integer quantization,
also called fixed-point quantization [16].

QAT with 4-bit is successfully applied on multiple speech
models [20, 21, 18, 22, 23] with minimal accuracy impact.
Lower than 4-bit weight quantization is explored for different
applications [24, 25, 26], but there is not much research on 2-
bit quantization of ASR models. One work [27] addresses lower
than 4-bit quantization, but the authors showed significant accu-
racy degradation with 2-bit and 4-bit quantization. Note that in
[27], the authors quantize both activation and weights. Here we
are focused on 2-bit Conformer weights only quantization with
minimal accuracy impact. Our main contributions are outlined
as below:
• We present a new 2-bit asymmetric dynamic sub-channel

QAT technique with adaptive per channel clipping (based on
greedy search). It is open sourced in Praxis [28].

• We benchmark several proposed approaches of QAT and
demonstrate that Conformer ASR on LibriSpeech data shows
minimal or no accuracy loss with 2-bit weights when com-
paring to state of the art float model. We reduced model size
by 32% relative to the 4-bit model and establish state of the
art ASR model in terms of model size and WER.

• We evaluate the effectiveness of the best 2-bit setup on a
Conformer model that is trained on large-scale datasets. We
achieve over 40% model size reduction against the 4-bit ver-
sion at the cost of 17% relative word error rate degradation.

2. Quantization aware methods
2.1. Symmetric quantization: I2Wsym

The standard method of weights only QAT is based on symmet-
ric quantization [29]. State of the art 4-bit symmetric quantiza-
tion is presented in [18]. We use approach described in [18] as
the baseline, configure it for 2-bit quantization, and label it as
I2Wsym. Note that 2-bit symmetric quantization under-utilizes
the 2-bit quantization buckets (because it uses only three val-
ues). As a result, symmetric quantization can degrade accuracy.

2.2. Asymmetric quantization: I2Wasym

Asymmetric quantization [29] allows us to use all four quantiza-
tion buckets by estimating the minimum value and subtracting
it from the input tensor. We label 2-bit asymmetric quantization
as I2Wasym. In Figure1, we show an example with per channel
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Figure 1: Per-channel asymmetric quantization.

asymmetric quantization. The input tensor (weight matrix) has
two rows (every row is called a channel). We quantize it using
the function quantize (shown on Figure 5). It computes min
value (min val) for every row (using function scale and min
from Figure 5) then subtracts it from input tensor and divides by
scale. In Figure 1, ”quantized tensor” is the output of function
round clip, which rounds and clips the tensor between zero and
three (according to 2-bit quantization range). The de-quantized
tensor is shown at the bottom of Figure 1. It is computed us-
ing the dequantize function (shown in Figure 5). As we can
see in Figure 1, most de-quantized values (highlighted by bold)
are different from the original values in the input tensor. The
reason for such quantization error is outliers in the input ten-
sor. We use Figure 1 for illustration purposes. In Figure 2, we
show quantization error of asymmetrical per channel quantiza-
tion (blue curve in Figure 2) applied on an input tensor with
size [32, N], where 32 is the number of channels and N can be
32, 64, 128, 256 or 512 (x-axis). The input tensor is filled with
standard normal noise (with zero mean and unit variance), and
then it is quantized and de-quantized. The quantization error (y-
axis) is defined as the mean (over all entries) absolute difference
between input tensor and corresponding de-quantized tensor.

2.3. Asymmetric quantization with scale backpropagation:
I2WasymSc

In [18], the authors used full Straight-Through Estimator(STE)
for quantization aware training of 4-bit ASR. We call it full STE
because the gradient did not propagate through round and scale
computation. To improve model quality we enable gradient
over scale [30] and set stop gradient equal false in the function
scale and min in Figure 5. This approach allows to reduce out-
liers as described in [30]. 2-bit asymmetric quantization with
scale backpropagation will be labeled as I2WasymSc. All sub-
sequent QAT methods will use backpropagation over scale as
well.

2.4. Asymmetric quantization with scale backpropagation,
sub-channel and adaptive clipping: I2WasymScSubchClip

One of the methods of dealing with the outliers in the input ten-
sor (model weights) is based on sub-channel quantization [31],
which is also similar to group based quantization [32, 33]. The
key idea is to split a channel into several sub-channels and then
quantize them independently. It can introduce additional over-
head because with more sub-channels, we will need to keep
more quantization metadata: scales and minimum values. An
example of such an approach is shown in Figure 3. The input
tensor with two channels is reshaped, so that there are 4 sub-
channels. Afterwards, the same quantization operations, de-
scribed on Figure1, are applied. As we can see, the de-quantized

channel-wise asymmetric
8 sub-channels
4 sub-channels
8 sub-channels with clipping

4 sub-channels with clipping
N

Figure 2: The per-entry mean absolute quantization error plot-
ted against the size of the input dimension.
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Figure 3: Sub-channel quantization.

tensor has only four different values (highlighted by bold on
Figure 3) when compared against the input tensor. In Figure 2
we show the quantization error of this approach when splitting
into 4 sub-channels (red dashed line) and 8 sub-channels (green
dashed line). As expected, the quantization error with 4 sub-
channels is lower than that of channel-wise asymmetric quanti-
zation (described in section 2.2). Furthermore, the quantization
error becomes even lower after increasing the number of sub-
channels to 8.

Another approach to reduce the number of the outliers in the
input tensor is based on clipping. For example, in PACT [15],
the authors propose to learn clipping parameters to improve the
quality of activation quantization. In [16, 34], the clipping value
is estimated based on percentile. In [34], the authors design
OCTAV [34] algorithms for online estimation of clipping val-
ues. In this work, we propose to use greedy search for clipping
parameter estimation. Hence, we combine sub-channel quanti-
zation with clipping as demonstrated on Algorithm 1, and label
it as I2WasymScSubchClip. The input tensor (weight matrix)
is reshaped so that the channel dimension is divided into sev-
eral sub-channels. For example, in Figure 4, two input channels
are divided into four sub-channels. Then we run greedy search
over clipping values in the range of [0.5, 1.0] with 0.05 step,
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Figure 4: Sub-channel quantization with clipping per sub-
channel.

and compute mean absolute error between the input weights and
the quantized/de-quantized weights (for quantization and de-
quantization we call functions presented on Figure 5). We apply
different clipping values per sub-channel and select the quan-
tized tensor with clipping values that correspond to the minimal
quantization error. An example of quantized tensor (generated
by Algorithm 1) is shown in Figure 4. As we can see, the com-
bination of sub-channel quantization with greedy search over
clipping parameter allows us to further reduce quantization er-
ror. In this example, the de-quantized tensor has only two num-
bers that are different from the input tensor. In Figure 2, we
show the quantization error of these approaches: 4 sub-channels
with clipping (solid red line) and 8 sub-channels with clipping
(solid green line). We observe that sub-channel quantization
with clipping has the lowest quantization error, and we hypoth-
esize that this approach will be useful for low bit quantization
aware training.

Algorithm 1 Sub channel quantization with clipping

1: procedure QUANTIZESUBCHCLIP(w) . Input weights
2: input shape← w.shape . Weights shape
3: w sub← reshape(w) . Split into sub channels
4: w q, scale,min val← greedy search(w sub)
5: w deq ← dequantize(w q, scale,min val)
6: w deq ← reshape(w deq, input shape)
7: return w deq . De-quantized weights
8: end procedure

3. Experimental setups
3.1. Datasets

Similar to [18], we use LibriSpeech [35] to conduct QAT ex-
periments. The LibriSpeech training set contains 960 hours of
speech, where 460 hours of them are “clean” speech and the
other 500 hours are “noisy” speech. We use “dev-clean” data
to select the best model and then report its accuracy on “test-
clean” and “test-other” data sets.

In terms of the experiments with large-scale datasets, we
train the models with an in-house training set consisting of
∼1000 million United States English audio-text pairs from mul-
tiple domains, such as YouTube, search, and dictation. A small
portion of the dataset is anonymized and hand-transcribed,
while the rest is pseudo-transcribed with a 600M-parameter
teacher system [36]. Word error rates are reported on 5.5K
anonymized and hand-transcribed utterances representative of
voice search traffic.

1 @tf.custom_gradient
2 def round(x):
3 # Use STE for gradient.
4 return tf.math.floor(x + 0.5), lambda dy: dy
5

6 def round_clip(x, prec):
7 x = round(x)
8 x = tf.clip_by_value(x, 0, 2.**prec - 1)
9 return x

10

11 def scale_and_min(x, prec, axis, clipping =
1.0, stop_gradient_scale=False):

12 min_val = tf.math.reduce_min(x, axis=axis,
keepdims=True)

13 max_val = tf.math.reduce_max(x, axis=axis,
keepdims=True)

14

15 min_val = tf.multiply(min_val, clipping)
16 max_val = tf.multiply(max_val, clipping)
17 scale = tf.divide(max_val-min_val,2.**prec-1)
18

19 if stop_gradient_scale: # STE over scale
20 scale = tf.stop_gradient(scale)
21 return scale, min_val
22

23 def quantize(x, prec, axis, clipping=1.0,
stop_gradient_scale=False):

24 scale, min_val = scale_and_min(x, prec, axis,
clipping, stop_gradient_scale)

25 x = x - min_val
26 x = tf.math.divide_no_nan(x, scale)
27 qx = round_clip(x, prec)
28 return qx, scale, min_val
29

30 def dequantize(qx, scale, min_val):
31 deqx = qx * scale
32 deqx = deqx + min_val
33 return deqx

Figure 5: Quantization functions

3.2. Details in Conformer model architecture

We use the same state-of-the-art Conformer Transducer [5]
backbones as in [18] for experiments on LibriSpeech and large-
scale datasets. For LibriSpeech experiments, the model has a
single encoder with different number of layers for Small (16
layers, 10M parameters) and Large (17 layers, 118M) mod-
els. The decoder is a standard RNN-Transducer decoder with
1-layer LSTM. The backbone of the experiments with large-
scale data is based on [37], consisting of a 7-layer causal con-
former encoder (23-frame left context) and a 6-layer non-causal
encoder (additional 30-frame right context). Each RNN-T de-
coder is comprised of an embedding prediction network and a
fully-connected joint network.

4. Results
4.1. Experiments on LibriSpeech

We experiment with the Conformer Large and Small models
to examine the behaviors of 2-bit QAT with different model
sizes. We hypothesize that the larger the model size, the easier
to quantize its weights with no accuracy loss. The Conformer
ASR model size is dominated by the Conformer blocks of the
encoder, which account for 95% and 82% of the Large and
Small models’ disk utilization, respectively. For small models,
decoder quantization disproportionately impacts model quality,
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Table 1: Results of our proposed int2 QAT on Conformer
Large(L) and Small(S) models with the baseline approaches on
LibriSpeech test-clean and test-other subsets. Please see Sec-
tion 4.1 for the meanings of the method abbreviations.

Conformer (L)
Method test-clean test-other Model size (MB)
[18] Float 2.0 4.4 474.5
I2Wsym 3.6 8.1 53.8
I2Wasym 2.2 5.0 54.0
I2WasymSc 2.2 4.6 54.0
I2WasymScSubchClip 2.0 4.5 55.3
[18] I4W 2.0 4.4 81.9
[38] I6W8A 4.0 8.5 92.8
[38] I8W 3.1 7.1 123.7
[18] I8W 2.0 4.5 138.1

Conformer (S)
Float 2.5 6.1 41.5
I2Wsym 8.7 19.6 10.1
I2Wasym 4.3 10.3 10.2
I2WasymSc 3.1 7.3 10.2
I2WasymScSubchClip 3.1 7.0 10.5
[18] I4W 2.7 6.3 12.2
[18] I8W 2.5 6.0 16.4

Other Architectures
[39] I8W 8.7 22.3 60
[39] I6W 8.9 22.8 45
[40] I8WA 6.9 — 8

while for large models the theoretical benefit of using decoder
quantization becomes increasingly negligible. Hence, we de-
cided to emulate [18]’s approach and implement encoder-only
quantization. As in [18], we additionally opted to exclude quan-
tization of the depthwise convolutional layers, as their contribu-
tion to model size is negligible. All other weights in the en-
coder’s Conformer blocks are quantized with 2 bits, and their
disk utilization is calculated assuming weight packing of 0.25
bytes/param.

We evaluate several 2-bit QAT configurations to see the im-
pact of symmetric, asymmetric quantization, backpropagation
on scale, and sub-channel quantization with clipping:
• Float: float32 weight, float32 activation (baseline)
• I2Wsym: int2 weight with symmetrical quantization (we ap-

plied the approach in [18]).
• I2Wasym: int2 weight with per-channel asymmetrical quan-

tization, described in section 2.2, with full straight through
estimator (stop gradient scale is set to True) as in [18].

• I2WasymSc: int2 weight with per-channel asymmetrical
quantization, described in section 2.3 and partial straight
through estimator: with stop gradient scale is set to False,
so that scale is part of the backpropagation.

• I2WasymScSubchClip: int2 weight with per-channel asym-
metrical quantization combined with sub-channel and clip-
ping greedy search presented as Algorithm 1 and described
in section 2.4. As I2WasymSc, it uses partial straight through
estimator: with stop gradient scale is set to False, so that
scale is part of the backpropagation. We use 4 sub-channels
for Conformer (L) and 8 for Conformer (S). Clipping greedy
search was done in a range from 0.8 to 1.0 with 0.02 step.

We train Conformer(L) and Conformer(S) models with all
above QAT configurations on 64 TPUs. Conformer(L) model
converges with 150k training steps (it takes 2.3 days). Con-
former(S) model converges with 400k steps (it takes 4.8 days).
Note that QAT with I2WasymScSubchClip is 40% slower than

Table 2: Results of applying int2 QAT to production ASR model
on large-scale data.

Exp Model WER Model size (MB)
B0 float32 model 6.0 480
B1 int4 6.3 65
E0 int2 12.6 37.5
E1 int2 I2WAsymScSubchClip 7.6 37.5
E2 int2 I2WAsymScSubchClip + MSQE [41] 7.4 37.5

other models due to the greedy search algorithm, but other pre-
sented approaches have no impact on training speed). In Ta-
ble 1, we report the word error rate(WER) of Conformer(L)
and Conformer(S) models trained with quantization techniques:
I2Wsym, I2Wasym, I2WasymSc and I2WasymScSubchClip.
QAT with asymmetric quantization (I2Wasym) allows us to use
all four quantization buckets and reduce WER by 3% abso-
lute (in comparison to I2Wsym) on Conformer(L) “test-other”
data. QAT with asymmetric quantization and enabled back-
propagation over scale (I2WasymSc) further reduces WER by
0.4% absolute on Conformer(L) “test-other” data. Combin-
ing I2WasymSc with sub-channel and clipping greedy search
I2WasymScSubchClip gives the same WER with the state of the
art int8 weights quantization model [18], which is only 0.1%
worse than the float baseline on Conformer(L) ”test-other” data.
On 2-bit ASR model quantization we observe that the larger the
model, the easier it is to quantize its weights with minimal ac-
curacy loss.

4.2. Exploring the limit of 2-bit quantization on large data

As shown in Table 2, when training the model with large-scale
datasets, 4-bit quantization [18] (B1: 6.3) can mostly retain
the float model (B0: 6.0) performance with minimal regres-
sion, which corresponds to the observations in [18]. However,
quantizing the model to 2-bit becomes increasingly challenging,
as the model is usually under-fitting. If we simply apply ASR
quantization from [18] for 2-bit QAT to the model (E0), there is
a significant WER regression compared to the float model (12.6
vs. 6.0). Alternatively, if we train the model with our best setup
obtained from Section 4.1 (E1; i.e., asymmetric quantization,
backpropagation on scale, and sub-channel quantization with
clipping), the WER has been from 12.6 to 7.6 over the naive
2-bit QAT version E0. In addition, we add an extra quantization
regularization MSQE [41] term E2 as MSE between weights
and de-quantized weights. It can further mitigate the gap be-
tween 2-bit and float model by 0.2%. In summary, our best
performance 2-bit model E2 has a 1.4% WER gap compared to
the float model but with over 90% of model size saving, com-
pared to the float model. In terms of the 4-bit model B1, the
2-bit model E2 has a 1.1% WER gap but achieves over 40% of
model size reduction.

5. Conclusion
We proposed a novel approach of 2-bit QAT based on dynamic
asymmetrical sub-channel quantization with adaptive per chan-
nel clipping. We reduced model size down to 55MB with min-
imal or no accuracy loss and established state of the art ASR
model in terms of model size and WER. We also showed that
the larger the model (> 100M parameters), the easier it is to
quantize its weights with 2bit with no accuracy loss (it is im-
portant for large speech models). When training the model
with large-scale datasets, we illustrated the inevitable WER re-
gression from the 2-bit model, and we showed that our pro-
posed techniques can significantly mitigate the gap between 2-
bit model and the float counterpart.
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