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Abstract

Asthma is one of the most prevalent respiratory disorders,
which can be identified by different modalities such as speech,
wheezing of lung sounds (LSs), spirometric measures, etc. In
this paper, we propose AsthmaSCELNet, a lightweight su-
pervised contrastive embedding learning framework, to clas-
sify asthmatic LSs by providing adequate classification margin
across the embeddings of healthy and asthma LS, in contrast
to vanilla supervised learning. Our proposed framework con-
sists of three steps: pre-processing, melspectrogram extraction,
and classification. The AsthmaSCELNet consists of two stages:
embedding learning using a lightweight embedding extraction
backbone module that extracts compact embedding from the
melspectrogram, and classification by the learnt embeddings us-
ing multi-layer perceptrons. The proposed framework achieves
an accuracy, sensitivity, and specificity of 98.54%, 98.27%, and
98.73% respectively, that outperforms existing methods based
on LSs and other modalities.

Index Terms: lung sounds, wheeze, asthma classification.

1. Introduction

Asthma is one of the severe chronic respiratory diseases and has
been listed as one of the members of the “Big Five Respiratory
Diseases” by the world health organization [1]. According to
the global asthma report, more than 339 million (M) individ-
uals have been affected from asthma worldwide. Spirometry-
based measurements are often used to diagnose and monitor the
asthmatic condition [2], which evaluates how quickly and how
much air a person can exhale. In spirometry test, a patient has
to inhale deeply and exhale forcefully into a mouthpiece with
clipped nose. To evaluate the level of severity in asthma, sev-
eral spirometric measures are used, such as forced expiration
capacity, forced expiration volume of 1 second (FEV1), and
the ratio of both of these quantities [2]. However, spirometry
is highly dependent on patient efforts as it is a highly labo-
rious procedure, especially for elders and children [3]. One
of the techniques for asthma monitoring is peak flow meter
[4] which measures the airflow rate of major airways through
which air reaches to lungs. However, the main drawback of this
modality is its inability to measure the airflow rate through the
smaller airway paths which gets affected by asthma [4]. Hence,
wheezing events of LSs can be exploited for asthma detection
[5], as these sounds are associated with many structural faults
that occur in the lungs as a result of respiratory diseases [6],
[7]. Thereby, developing artificial intelligence (Al)-based auto-
mated algorithms using LSs will be extremely beneficial in the
detection of asthma.

In recent years, several medical diagnostic modalities have been
used to identify asthma, such as Yadav et al. [8] used pathologi-

cal speech signals from healthy and asthma subjects. They used
mel-frequency cepstral coefficient (MFCC) features and sup-
port vector machine (SVM) based machine learning classifier
and achieved an accuracy of 77.8% in classifying asthma pa-
tients. Altan et al. [9] proposed an asthma classification frame-
work with 84.61% accuracy rate using LS recordings. To iden-
tify the asthma, the LSs were segmented into 15-second frames
and passed through a 1st-order high pass filter, then decom-
posed using the Hilbert Huang transform (HHT), followed by
statistical feature extraction, and classification using a deep be-
lief network (DBN). Tripathy et al. [10] recently developed an
asthmatic LS classification system based on empirical wavelet
transform (EWT) and feature extraction, followed by a variety
of machine learning (ML) classifiers such as SVM, random for-
est, K-nearest neighbor (KNN), etc., and achieved a classifi-
cation accuracy of 80.35% [10]. Existing methods uses tradi-
tional ML classifiers with handcrafted features which fails to
derive the accurate representation of the highly varying time-
frequency content of LSs,leading to poor classification perfor-
mance. Therefore, there is a need to develop a novel deep learn-
ing network that can provide accurate distinct feature represen-
tation from LSs and achieve higher classification rate.

In this paper, we first introduce a melspectrogram time-
frequency representation driven supervised contrastive em-
bedding learning (SCEL) framework for asthma classification
based on LSs, that mitigates two main drawbacks of the tradi-
tional cross-entropy loss-based supervised deep learning train-
ing procedure: inadequate classification margins across samples
of various classes [11], and susceptibility to noisy labels [12],
by focusing on inter-class dissimilarity and intra-class similar-
ity via triplet loss-based contrastive learning mechanism. To
the best of our knowledge, this is the first deep learning-based
framework for asthma classification using LSs. The major con-
tributions of the paper are summarized as follows:

* Investigating the potential of mel-spectrogram representation
for the first time in asthma classification.

* Designing a novel contrastive triplet loss-based SCEL frame-
work to provide better classification margin across the
healthy and asthmatic LS class by surpassing the vanilla su-
pervised learning methods.

* Designing a lightweight embedding extraction backbone
(LEEB) to extract compact embedding representation from
LS by exploiting the paradigm of lightweight neural network
architecture that reduces the number of trainable parameters.

* Extensive evaluation of the proposed framework using the
publicly available database through several performance pa-
rameters.

The rest of the paper is organized as: Section 2 describes the
publicly available database, and Section 3 includes a detailed
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Figure 1: Block diagram of proposed AsthmaSCELNet framework for asthmatic LS classification.

discussion of the proposed framework. Section 4 evaluates the
proposed framework, and finally, Section 5 concludes the work.

2. Database Description

Chest wall lung sound database (CWLSD) [13] is a recently
published publicly available database for respiratory disease
identification based on LS recordings. The LS recordings are
collected using Littmann 3200 digital stethoscope with a sam-
pling rate of 4000 Hz. The database includes a total of 336 LSs
which have been collected from 112 human subjects at King
Abdullah University Hospital in Jordan. The database con-
tains a total of 96, 9, 14, 56, 38, 12, and 6 records for each
class of respiratory disorders, including asthma, bronchiecta-
sis (BRON), pneumonia, heart failure, chronic obstructive pul-
monary disease (COPD), fibrosis, and pleural effusion. The au-
dio signal’s duration is irregular, varying from 10 seconds to 50
seconds. In this study, we have considered a total of 105 LS
recordings from the healthy class, and 96 recordings from the
asthma class to evaluate the potential of our framework.

3. Proposed Framework

In this study, we introduce a novel lightweight supervised con-
trastive embedding learning framework to distinguish between
asthmatic and healthy LS signal. Our proposed framework con-
sists of three main stages: (a) pre-processing, (b) melspectro-
gram extraction, and (c) classification using the proposed Asth-
maSCELNet which exploits the potential of a supervised con-
trastive embedding learning approach. The individual stages are
covered with details in the following subsections.

3.1. Pre-processing

The raw LS signals (LSyqw[n]) are initially framed into Ssec
window keeping 50% overlap with the next adjacent window.
Thereafter, low-frequency baseline wandering (BW) compo-
nent is removed by employing a discrete Fourier transform
(DFT) based filtering approach as presented in [14], by extract-
ing the DFT coefficients with frequency values below 1Hz [14].

3.2. Melspectrogram extraction

LSs are highly nonstationary signal. Therefore, to extract more
information from the LS signal, it is beneficial to transform the
signal from time domain to time-frequency domain which helps
to capture the variation of changing frequency over time [9].
In this paper, we have extracted melspectrogram representa-
tion from the normalized LS signal by using mel-scale mapping
of basic frequency bins [15]. Firstly, we compute short-time
Fourier transform (STFT) of BW-free LS (LS f[n]) as
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where, Wn] is taken as Hanning window of 1024 samples,
with hop-length (H) of 512 samples. Thereafter, we project
the Hertz frequency (f) to mel-scale frequency (fimer) to con-
struct the mel-filter banks. In this work, we have considered 64
triangular overlapping mel-filters. This mel-scale conversion is
formulated as [15]:

Fmer = 25951og(1 + f/700) )
To extract the melspectrogram, the mel-filters are multiplied
with each frame of STFT (S[m, k]) [15], [16]. Lastly, a log
transform is used on the amplitudes of the melspectrogram.
Then, these 2D melspectrograms are converted to 3-channel im-
ages by using the ‘jet’ colormap [15] and reshaped into a size of
224 x 224 x 3. Fig. 2 (a), Fig. 2 (c) illustrate the temporal vi-
sualization and melspectrogram representation of asthmatic LS,
and Fig. 2 (b), and Fig. 2 (d) illustrates the same for healthy LS
signal.
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Figure 2: (a), (¢) lllustrates the temporal visualization and mel-
spectrogram representation of asthmatic LS, (b), (d) temporal
visualization and melspectrogram representation of healthy LS.

3.3. Model architecture of proposed AsthmaSCELNet

In this subsection, we discuss the proposed AsthmaSCELNet
which consists of two steps. In the first step, we train our pro-
posed LEEB module using triplet loss-based supervised con-
trastive learning, which facilitates the embedding representa-
tion learning and extracts compact representation from the input
melspectrogram (X ). In the second step, we use the pretrained
lightweight embedding extraction backbone (LEEB) module to
extract embedding and train a multi-layer perceptron (MLP)-
based classifier using the extracted embedding to classify asth-
matic LS signals.

3.3.1. Contrastive embedding learning based on Triplet loss

Here, first we introduce the proposed lightweight neural net-
work architecture, namely the LEEB module to extract embed-
dings from the given melspectrograms. The detailed architec-
ture of the LEEB module is provided in Fig. 1. This LEEB
module consists of stacked layers of standard convolution block
(SCB), depthwise and pointwise convolution block (DPCB),
two multiscale residual inception mobile blocks (MSRIMBs),
global average pooling (GAP) and dense layer with 40 neu-
rons. SCB computes convolution using (3 x 3) kernel and 16



filters. While DPCB uses (3 x 3) depthwise and (1 x 1) point-
wise convolution layer with 32 filters and helps to reduce the
parameter size [17]. Both SCB and DPCB contains ReL.U ac-
tivation and maxpooling (MP) layers with (2 x 2) kernel and
stride of 2. Two MSRIMBs facilitates multiscale feature ex-
traction from same input tensor. The detailed architecture of
MSRIMB is provided in Fig. 3, which contains inception like
structure [18], however, modified by DPCBs [19] and consists
of a residual skip connection [20] which helps to mitigate the
problem of overfitting [20]. A detailed ablation study regarding
the total trainable parameters of the proposed LEEB module is
discussed in Table 1, which tabulates the number of parameters
required to construct each layer of the LEEB module. From Ta-
ble 1, we can observe that our proposed LEEB module requires
only 18856 trainable parameters to extract efficient embedding
representation from the given melspectrograms. This indicates
the lightweight nature of the proposed architecture. Finally, the
LEEB module provides embedding size of E € %% after the
dense layer with 40 neurons. As the LEEB module is trained

|
I
Ccn\l 2D

k=(1,1), =16
RelU

¥

| | Depthwise

¥

| | Depthwise
_conv, k=(5,5)
RelU
Conv 2D
‘ | k=(1,1), f=16
RelLU

Max pool
2D
Conv 2D
k=(1,1), f~16
RelU

conv, k=| (3 3)
[ RelU |

e

Conv 2D
k=(1,1), f=16
RelU

Channel wise
concatenation layer

.

P
Figure 3: Architecture of proposed MSRIMB
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using triplet loss [21], it is configured as a parameter shared
triplet neural network [22]. We have trained the LEEB mod-
ule to transform the melspectrograms to an embedding space
using three sets of data: anchor data (X “4™<"°"), positive data
(X Feositive) "and negative data (XV997"¢) a5 demonstrated
in Fig 1. These three sets of data are randomly sampled from
the training set where, { X Ancheor X Fositivel ¢ same class,
and X Ve99%e ¢ some other class. The two main reasons why
the proposed framework is referred to as supervised contrastive
embedding learning are: firstly, the triplet training subsets are
sampled based on their labels [23] i.e., sampled with supervi-
sion of labels [23]. And secondly, the use of triplet contrastive
loss [21], [23] in the context of learning faithful embedding
representation from the melspectrogram representations. The
LEEB module is trained independently to learn the embedding
using one of the traditionally used contrastive loss functions; the
triplet loss function [23], which increases the distance between
embeddings of two distinct classes and reduces the distance be-
tween embeddings of the same classes [21]. The triplet loss can
be formulated as:
oﬁriplet — maX{O,’y + @(EAnC, EPOS) _ @(EAnc’ENeg)}
3
where, 2(E*™¢, EF°) indicates the Euclidean distance be-
tween anchor-embedding (E4™¢), and positive-embedding
(EF°). Similarly, 2(E*"¢, EN9) indicates the Euclidean
distance between anchor-embedding (E“™°), and negative-
embedding (E™V®9). The margin value +y is used to create ad-
equate margin in the embedding space among the embeddings
of several classes to obtain discriminant embedding from each
class. While experimenting, we have found that v = 0.2 pro-
vides the best result for this problem.
3.3.2. Downstream asthma classification stage
In this stage, we use the pretrained frozen LEEB module to ex-
tract embeddings from the melspectrograms (X ). Thereafter,
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these embeddings are passed through two dense layers or MLP
layers with 20 neurons in each layer. The activation function
used for these layers is ReLU, and dropout rate of 0.3, 0.2 are
used in the two dense layers respectively, to alleviate overfitting
problem. Finally, output of the dense layer is classified using
sigmoid activation function. The operation for the classification
layer can be expressed as:

O =o0(< UM >+Ho) C))

where, < %, #, > denotes the dot product between weight
vector (#5) and the output of the dense layer (%), Ao de-
notes the bias, and o refers to the sigmoid activation function
[24] which is used for binary classification. Finally, the clas-
sifier is trained using a binary cross entropy loss function [24],
and a gradient descent-based weight update approach. The op-
timal simulation parameters used to train the AsthmaSCEL-
Net are shown in Table 2 which have been selected using the
GridSearchCV-based KerasTuner hyperparameter optimization
framework [25].

Table 1: Description of Total Parameter Size of LEEB Module

Kernel|, . Filter Output | Trainable
Layer . Stride .
size (k) number size parameters
Input layer - - - 224%224%*3 0
Standard conv2D | (3,3) 2 32 112%112%32 896
ReLU - - 112%112%32 0
MP (2,2) 2 - 56*56*32 0
Depthwise conv2D| (3,3) 1 - 56%56%32 320
ReLU — - - 56*56%32 0
Pointwise conv2D| (1,1) - 64 56*56*64 2112
ReLU — - - 56*56%64 0
MP 2,2) 2 - 28*28%64 0
MSRIMB - - |16,16,16,16] 28*28%64 6464
MSRIMB — 16,16,16,16| 28*28%64 6464
GAP - - - 64*1 0
Dense - - - 40*1 2600
Total Parameters 18856

Table 2: Optimal Simulation Parameters Used to Train LEEB
Module and Classifier of the Proposed AsthmaSCELNet

Parameter LEEB module | Classifier
Input shape 224 x 224 x 3| 40 x 1
Trainable parameters 18856 1282
Optimizer Adam Adam
Learning rate 0.008 0.008
Batch size 64 64
Epochs 400 100

4. Result and discussion

In this section, we compare the quantitative and qualitative per-
formance of the proposed AsthmaSCELNet framework with
some notable prior works on asthma classification.

4.1. Evaluation metrics

To evaluate the efficacy of the proposed framework, we have
used the following matrices: accuracy (acc) [26], [27] sensitiv-
ity (sen) or recall (rec) [28], [27] specificity (spe) [27], precision
(pre) [28], F1-score, and ICBHI score [29], [7], an average of
specificity and sensitivity, is one of the most widely used per-
formance metrics in LS classification tasks.

4.2. Performance evaluation

The performance of the proposed architecture is evaluated
based on training and testing of the network using a 5-fold
cross-validation method. Initially, the whole LS data from
asthma patients and healthy subjects are splitted into 80% - 20%
training-testing set. Further, we take 10% data from the training
set to create the validation set. The testing data was not involved



in any training and fine-tuning process of the proposed Asthma
SCELNet. Fig. 4 illustrates the performance of the LEEB mod-
ule in terms of efficient embedding extraction. The embeddings
extracted from the LEEB module are visualized in a 2D feature
plane by t-distributed stochastic neighbor embedding (t-SNE)
[30] shown in Fig 4. In Fig. 4 (a), the initial raw LSs were
dispersed randomly in the 2D feature plane. After applying the
LEEB module, the embeddings of the same LSs extracted from
corresponding melspectrograms are well separated in the 2D
feature plane, that can be observed in Fig. 4 (b). As these em-
beddings are highly discriminative by themselves, it becomes
relatively simple for the classifier to categorize asthmatic LSs.
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Figure 5: (a-b) Classification loss and accuracy curve obtained
while training the classifier using the embeddings extracted

from the frozen LEEB module.
Fig. 5 (a-b) illustrates the training-validation loss, and accuracy

plots of the classifier trained using the embeddings extracted
from the frozen LEEB module. It can be observed from Fig. 5
that the classifier achieves a decent amount of accuracy within
a few numbers of epochs. Table 3 indicates the classification
performance of the proposed AsthmaSCELNet in terms of the
aforementioned evaluation metrics. It can be observed that us-
Table 3: Classification Performance Using AsthmaSCELNet
Performance metrics in percentage (%)

[ spe [ prc [ Fl-score |
[ 9873 | 9827 | 9827 |

ICBHI score
98.50

ace
9854 |

sen
98.27

ing the proposed framework, we have achieved higher accuracy
as compared to the state-of-the-art results on asthma classifica-
tion by using LS signals. To prove the efficacy of our proposed
framework, we have shown the receiver operating characteris-
tics (ROC) curve of both asthma, and healthy LS classes in Fig 6
(a). It can also be observed that for each of the classes, we have
achieved a high area under the curve (AUC) value using the
proposed AsthmaSCELNet. Additionally, Fig. 6 (b) illustrates
the confusion matrix obtained from the AsthmaSCELNet. From
the confusion matrix, we can observe that our proposed frame-
work achieves very less misclassification rate for both classes.
We had implemented our framework with keras in Python and
tested on Windows 10, 32GB RAM desktop consisting of In-
tel Xeon(R) W-1350 3.30 - 3.31 GHz processor, where, it takes
nearly 3.62 sec to classify an entire lung sound signal at the
inference time.

4.3. Performance comparison

In this subsection, we compare our proposed AsthmaSCELNet
with other existing research works on asthma classification. Ta-
ble 4 shows the comparative results for the asthma classifica-
tion task using various diagnostic modalities. From Table 4, it
is clear that LS outperforms other modalities, such as patho-
logical speech used by Yadav et al. [8], in diagnosing asthma.
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Figure 6: Illustrates the (a) ROC curve for both asthma and
healthy class, (b) confusion matrix obtained from the test data.
However, it is evident that our suggested framework performs
better than all prior studies based on LS-based asthma detection
by a margin of 13% and 18%, respectively, when compared to
those published by Altan et al. [9] and Tripathy et al. [10]. To
the best of our knowledge, our proposed framework presents a
deep learning-based method for the first time for asthma clas-
sification using LS, which effectively reduces the burden of the
hand-crafted feature extraction approach used in [8], [9], [10].
Table 4: Performance Comparison of AsthmaSCELNet with
Other Existing Methodologies

Data type Results (%)
Reference yp Methodology ICBHI
(database) acc | sen | spe | o
Yadav et al. [8] S(g‘e;;)h MFCC features, SVM  [75.40| - - -
] LS Filtering, HHT,
Altan et al. [9] (own) | statistical features, DBN 84.61(85.83|77.11| 81.47
. j LS EWT, temporal-spectral
Tripathy et al. [10] (CWLSD)| features, ML classifiers 80.35|84.88/75.23| 80.05
Proposed LS Melspectrogram
framework (CWLSD)|driven AsthmaSCELNet 98.54/98.27/98.73| 98.50

Additionally, to demonstrate the lightweight nature of the
proposed AsthmaSCELNet, a rigorous comparative study is
given in Table 5 in terms of the following model evaluation pa-
rameters such as total trainable parameters, size of the model,
and performance rates. From Table 5, our proposed Asthma-
SCELNet clearly surpasses the current lightweight deep learn-
ing models by attaining the greatest performance metrics for
asthmatic LS categorization and also drastically reducing the
total trainable parameter size.

Table 5: Comparative Performance of Proposed AsthmaCCEL-
Net with Other Existing Lightweight Deep Learning Models

Model evaluation factors
Model No. of trainable | Size of Performance metrics (%)
parameter in model ICBHI
million (M) ace | osen | SPE | score
ResNet-50 [20] 256 M 298MB | 90.82 | 88.93 | 94.11 | 91.52
Mobilenet [19] 42M 46.9MB | 92.66 | 87.23 | 96.77 | 92.00
ShufflenetV2 [31] 54M 49MB | 87.15 | 80.35 | 94.33 | 87.34
Lightweight CNN [32] 3.8M 44.8MB | 95.74 | 93.65 | 92.34 | 92.99
AsthmaSCELNet 0.018 M 498KB | 98.54 | 98.27 | 98.73 | 98.50

5. Conclusion

In this paper, we have investigated the potential of supervised
contrastive embedding learning framework to identify the asth-
matic LSs using a novel LEEB module and MLP classifier. This
study makes use of the melspectrogram’s potential for identify-
ing asthma and exploits lightweight neural network architec-
ture that reduces the computational load. Employing the pro-
posed framework, we have outperformed the state-of-the-art
asthma classification approaches, by achieving highest classi-
fication accuracy of 98.54%. Additionally, we believe that our
framework will allow us to develop an on-device system that
can diagnose asthma from lung auscultations in real-world clin-
ical situations.
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