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Abstract
The success achieved by conformers in Automatic Speech

Recognition (ASR) leads us to their application in other do-
mains, such as spoofing detection for automatic speaker veri-
fication (ASV), where the conformer self-attention mechanism
might effectively model and detect the artifacts introduced in
spoofed speech signals. Also, conformers can naturally handle
the variable duration of speech utterances. However, as with
transformers, the conformer performance may degrade when
trained with limited data. To address this issue, we propose
utilizing conformers in conjunction with self-supervised learn-
ing, specifically leveraging a pre-trained model called wav2vec
2.0, which is pre-trained using a substantial amount of bonafide
data. Our experimental results demonstrate that our proposed
method achieves one of the best results in the recent ASVspoof
2021 logical access (LA) and deep fake (DF) databases.
Index Terms: Spoofing detection, deep learning, conformers,
Deep fake detection, wav2vec 2.0.

1. Introduction
Voice biometrics systems authenticate the identity of a speaker
through their voice using automatic speaker verification (ASV)
technology. Recent advancements in deep neural networks have
significantly improved the performance of ASV systems [1].
However, these systems are vulnerable to malicious attacks, in-
cluding voice synthesis or text-to-speech (TTS), voice conver-
sion (VC), replay, and impersonation attacks, which can com-
promise their security [2]. This paper focuses on voice con-
version and synthesis attacks, usually associated with logical
access (LA) to the biometric system and audio deep fakes. Both
use high-quality synthesized speech generated by modern VC
and TTS systems.

Thus, during the last few years, the scientific community
has paid attention to the development of anti-spoofing tech-
niques to detect spoofing attacks on ASV systems [2]. Sev-
eral evaluation campaigns have been organized on this topic,
including ASVspoof 2015 [3], 2017 [4], 2019 [5], and 2021
[6], focusing on LA attacks (TTS and VC), physical access at-
tacks (replay attacks), and speech deep fake detection. These
challenges highlight the importance of developing technologies
that are robust to different types of attacks and environmental
conditions, with deep neural networks (DNNs) being the most
effective approach [7, 8, 9, 10, 11, 12].

The attention-based encoder-decoder architecture is a pow-
erful tool for modeling speech dependencies. The transformer
architecture leverages self-attention to establish global depen-
dencies between the input and output sequences [13]. Re-
cent studies have shown that their combination with convo-
lutions allows to model both local and global dependencies

[14], with conformers demonstrating exceptional performance
in ASR [15]. However, these models require large amounts of
training data [16, 17, 18]. To address this, we propose a combi-
nation of conformers and self-supervised models, whose poten-
tial has already been proven in anti-spoofing tasks [19], in order
to mitigate the requirement of large training datasets.

Self-supervised learning (SSL) has gained attention due to
its ability to provide pre-trained models that generalize well
across different tasks with limited labeled data [17]. Several
SSL speech models, such as auto-regressive predictive coding
[20], wav2vec [21] and HuBERT [22] have shown promising re-
sults for speech processing tasks. HuBERT and wav2vec 2.0 are
popular SSL approaches applied in ASR [23, 24], mispronun-
ciation detection [25], speaker recognition [26], and emotion
recognition [27]. This type of model is currently being explored
for anti-spoofing. The authors in [19] explored the complemen-
tary benefits of data augmentation (DA) and achieved state-of-
the-art results (in combination with AASIST [28]). Thus, we
have applied the wav2vec 2.0 XLS-R (0.3B) model [23] as a
front-end technique, which has been pre-trained on a diverse
corpus of speech data over 120 different languages from vari-
ous regions worldwide.

The main contributions of this work are: (i) an improved
conformer-based architecture for anti-spoofing; (ii) a novel
classifier that combines a self-supervised model (wav2vec 2.0)
with a conformer encoder; (iii) the proposed architecture al-
lows processing variable-length utterances for spoofing detec-
tion. This last capability has the advantage of not disregarding
any information from the input speech signal, in contrast with
current state-of-the-art techniques, which apply cropping and
concatenation strategies for training and evaluation with fixed-
length speech sequences [19, 29].

The rest of this paper is organized as follows. Section 2
presents our proposed model, including the adaptation that en-
ables the use of conformers for classification. In Section 3,
we describe our experimental setup and the DA techniques em-
ployed in the experiments. Then, Section 4 describes the exper-
imental results obtained with multiple variants of the proposed
architecture. We compare our model with other state-of-the-art
anti-spoofing systems from the literature in Section 5 and sum-
marize our research findings in Section 6.

2. Proposed Method
In this section, we provide an overview of our model architec-
ture. First, we briefly detail the Wav2Vec 2.0 model employed
as a feature extractor as well as its fine-tuning process. Then,
we describe the adaptation of the conformer for classification
tasks such as spoofing detection.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

5281 10.21437/Interspeech.2023-1820



2.1. Wav2vec-based feature extraction

The pre-training of the wav2vec 2.0 XLS-R (W2V) model has
been carried out solely with bonafide data. As stated in [30],
to improve the detection of spoofing attacks, fine-tuning with
in-domain bonafide and spoofed training data is necessary. To
achieve this, we optimize the pre-trained model jointly with
the conformer encoder (detailed in the next subsection) through
back-propagation during training. In Section 4, we examine the
impact of utilizing this fine-tuned W2V model as opposed to not
using it, or using it without fine-tuning. This analysis provides
insight into the effectiveness of pre-trained fine-tuned models
and their impact on the model’s overall performance.

The raw input waveform signal sequence, s(n) (n =
0, . . . , N−1), is first processed by the W2V model to extract an
output sequence of feature vectors, O′ = (o′

i|i = 0, . . . ,M −
1) with o′

i ∈ RD′
. The convolutional neural network (CNN) in-

side the W2V model converts the input into a hidden feature se-
quence, which is then converted by the transformer network into
the output sequence O′. The ratio between N and M is dictated
by the CNN stride (20 ms in our case). The vector sequence
O′ is finally transformed, through a fully connected layer (FC)
plus a batch normalization (BN) and a SeLU activation func-
tion, into a final feature sequence O = (oi|i = 0, . . . ,M − 1),
with oi ∈ RD for i = 0, . . . ,M −1, where D is the dimension
of the conformer encoder, that is,

O = BN(SeLU(FC(O′))). (1)

2.2. Conformer encoder adaptation to classification

The conformer encoder is typically used for solving sequence-
to-sequence problems (e.g., in ASR). In order to adapt the con-
former to a classification task, we use a learnable classification
token that is initialized randomly, as in [16, 18]. This token al-
lows the conformer to be customized for a specific classification
task.

As shown in Figure 1, we prepend the token, denoted as
xclass, to the reduced output sequence of the W2V model. In
particular, if X0 = (x0

j |j = 0, . . . ,M) is the input sequence
of the first conformer block, then we will note

x0
0 = xclass, x0

j = oj−1 for 1 ≤ j ≤ M, (2)

where x0
j ∈ RD , for j = 0, . . . ,M . Now, this combined se-

quence is then processed by the conformer encoder blocks. De-
noting the output of the l-th conformer block as the sequence
Xl and its input as the sequence Xl−1, then

X̃ = Xl−1 +
1

2
FFN(Xl−1), (3)

X ′ = X̃ +MHSA(X̃) + Conv(X̃ +MHSA(X̃)), (4)

Xl = Layernorm

(
X ′ +

1

2
FFN(X ′)

)
, (5)

where FFN refers to a Feed Forward module, MHSA refers to
a Multi-Head Self-Attention module, and Conv refers to a Con-
volution module. Finally, we take the state of the classification
token at the output of the last conformer block (i.e., we only use
the first element of the output sequence of the last conformer
block xL

0 ) as the final audio representation. This representation
is fed to a linear layer to classify the input speech signal as ei-
ther bonafide or spoof. Thus, the classification token is trained
to capture the relevant characteristics of the audio signal to de-
termine whether the input signal is genuine or not.
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Figure 1: Block diagram of the proposed architecture.

By using this approach, we can effectively use the con-
former encoder, a sequence-to-sequence model, for a classifi-
cation task such as anti-spoofing. Moreover, as we will see
in more detail in Section 4, by utilizing the pre-trained W2V
model in conjunction with the conformer encoder we can sur-
pass the need for large training datasets that conformers usually
require.

3. Experimental Setup
In this section, we describe the datasets and evaluation metrics
employed for our experiments. Also, we describe the training
details and the data augmentation (DA) techniques applied.

3.1. Dataset and evaluation metrics

To evaluate our proposed method, we conducted experiments
on two subsets of the ASVspoof 2021 database: logical access
and deep fake [6]. The ASVspoof 2019 logical access training
and development partitions were used for training and valida-
tion [5]. The databases consist of bonafide and spoofed speech
generated using TTS and VC systems. The LA subset contains
codec and transmission variability, while the DF subset intro-
duces compression variability. Only six known attacks (2 VC-
based and 4 TTS-based) are present in the training and devel-
opment sets, while unseen attacks are present in the evaluation
datasets [6].

We used the pooled equal error rate (EER) [31] as a primary
metric and, for the LA evaluation dataset, we also report the
minimum normalized tandem detection cost function (t-DCF)
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[32] results.

3.2. Data Augmentation

To add variability to the existing training data, we made use of
the RawBoost DA tool [33], which adds variation in the form
of linear and non-linear convolutive noise, impulsive signal-
dependent additive noise, and stationary signal-independent ad-
ditive noise. Full details can be found in [33].

The DA applied in this work uses the same configura-
tion and parameters as reported in [33]. For the LA database,
a combination of linear and non-linear convolutive noise and
impulsive signal-dependent additive noise strategies are used,
while for the DF database, stationary signal-independent addi-
tive noise with random coloration is added.

3.3. Implementation details

Unless otherwise specified, we used a fixed-size input audio sig-
nal, which is cropped or extended, repeating its content, into
segments of approximately 4 seconds duration. We employed
the standard Adam optimizer with a learning rate of 10−6, a
weight decay of 10−4, and a batch size of 20, in order to mini-
mize a weighted cross-entropy loss function. The W2V model
was implemented by using the Fairseq project toolkit [34].

The fully connected layer following the wav2vec 2.0 model
has 144 output dimensions, which matches the dimension used
for the conformer blocks. We utilized 4 conformer blocks with
4 heads and a kernel size of 31, making a total of 2.4M parame-
ters for the conformer encoder. Also, we applied early stopping
in order to end the training process when the weighted cross-
entropy in the validation set did not improve across 7 iterations.
The final system results from uniformly averaging the model
weights of the top-5 epochs, i.e. the 5 epochs that demonstrated
the best performance on the validation set. For more details,
please refer to [35].

4. Results
This section begins with some preliminary results to discuss the
influence of the fine-tuned Wav2vec 2.0 model and the cho-
sen length of fixed-size inputs. Following that, we evaluate
the performance of our proposed model in both the LA and DF
ASVspoof 2021 evaluation datasets.

4.1. Preliminary results

Table 1 summarizes the impact of using the fine-tuned Wav2Vec
2.0 model. No data augmentation is considered here. We can
see that replacing the Wav2Vec 2.0 model with a short time
Fourier transform (STFT) using a Blackman analysis window of
30 ms length with 15 ms of frameshift and 256 frequency bins
performs poorly, achieving only a 12.95% and 28.64% EER
in the LA and DF evaluation sets, respectively. However, the
use of the pre-trained Wav2Vec 2.0 model improves the EER
to 7.65% and 8.67% in LA and DF, respectively. Fine-tuning
(FT) the Wav2Vec 2.0 model further improves performance,
achieving a 2.30% in LA and a 3.28% in DF, respectively. This
last result suggests that the Wav2vec 2.0 model alleviates the
need for a large dataset to train the conformer, making it able
to achieve state-of-the-art results without using extra spoofing
training data.

All these experiments were performed with a fixed speech
sequence duration of approximately 4 seconds. However, as
shown in Table 2, the selected input length, at which inputs are

Table 1: Comparison of different forms of processing the raw
audio inputs. FT refers to fine-tuned.

LA DF
Model EER min t-DCF EER

STFT + conformer 12.95 0.4899 28.64
W2V (no FT) + conformer 7.65 0.3807 8.67

W2V + conformer 2.30 0.2491 3.28

cropped or extended, can significantly impact the model’s per-
formance. Our results (with W2V + conformer) suggest that
excessive cropping or length extension can lead to a lower per-
formance. In this regard, it is worth noticing that the average
utterance lengths (measured in seconds) for the training, LA
evaluation, and DF evaluation sets are 3.43, 2.72, and 3.06 sec-
onds, respectively, with standard deviations of 1.42, 1.30, and
1.26, respectively. Specifically, cropping results in the loss of
available data for training or evaluation, leading to significant
performance degradation. Length extension is also harmful, al-
though not so much as cropping. These results reveal the impor-
tance of variable-length utterance processing to mitigate dura-
tion mismatch in both training/evaluation and, at the very least,
the evaluation/use stage.

Table 2: Comparison of training and evaluating with different
fixed size inputs. The first column indicates the approximate
duration to which the audios were cropped or extended.

LA DF
Length EER min t-DCF EER

2 seconds 7.80 0.3987 5.26
4 seconds 2.30 0.2491 3.28
6 seconds 6.18 0.3569 4.31

In the following subsections, we report results from training
with fixed-size data and evaluate using both fixed and variable-
length inputs. We also report results from training with variable-
length data to assess whether this (more costly) approach may
yield better results.

4.2. Results on the ASVspoof 2021 Logical Access Corpus

The performance of our proposed system on the LA evaluation
dataset is reported in Table 3. The results show that using vari-
able size inputs with data augmentation techniques improves
the system performance. Specifically, our system achieves an
EER of 1.38% when using fixed-size inputs, improving up to

Table 3: EER and min t-DCF results for the ASVspoof 2021
LA evaluation set, for variable or fixed length in training and
evaluation. DA refers to the use data augmentation technique.

Variable
Length
Train

Variable
Length

Eval
DA Pooled

EER (%)
Pooled

min t-DCF

× × × 2.30 0.2491
× × 1.38 0.2216
× × 2.82 0.2632
× 0.97 0.2116

× 5.14 0.3297
0.87 0.2092
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Table 4: EER results for the ASVspoof 2021 DF evaluation set
for variable and fixed length in training and evaluation.

Variable
Length
Train

Variable
Length

Eval
DA Pooled

EER (%)

× × × 3.28
× × 2.27
× × 3.47
× 2.58

× 9.91
7.36

0.97% when evaluated with variable-length utterances. More-
over, training the model with variable-length utterances yields
even better results, reducing the EER to 0.87% in the LA sce-
nario. Interestingly, it is worth noticing that the opposite occurs
when no data augmentation techniques are used. In this case,
the equal error rate increases from 2.30% to 5.14% when vari-
able length inputs are employed. We hypothesize that this may
be because the model is overfitting, so DA helps to avoid it.
Thus, when we add variability to the training data using DA
techniques, the full variable-length speech sequence can be ex-
ploited without overfitting.

4.3. Results on the ASVspoof 2021 Deep Fake Corpus

Table 4 shows the experimental results evaluated in the
ASVspoof 2021 DF evaluation dataset. In this case, the use
of variable-size utterances cannot obtain further improvements,
either combined with data augmentation or not. However, when
we use variable length only for evaluation, there is little differ-
ence with respect to the results with fixed-length inputs. When
combined with data augmentation, the training and evaluation
with fixed-length inputs achieve an EER of 2.27%, which is,
to the best of our knowledge, the best result in the literature.
Evaluation with variable-length sequences achieves a similar
EER of 2.58%, which also outperforms other state-of-the-art
systems. However, training and evaluating with variable-length
utterances increases the EER to 7.36%. This result suggests a
possible mismatch between the training dataset and the DF eval-
uation set, but further investigation is needed to confirm this.
As in the LA case, the addition of DA techniques always yields
better results than when no DA techniques are applied.

5. Discussion
Table 5 presents a comparison of the performance of our pro-
posed anti-spoofing system with other relevant systems from
the literature on the ASVspoof 2021 evaluation sets for both
the logical access (LA) and deep fake (DF) scenarios. The first
system is a baseline from the ASVspoof 2021 challenge that
uses a RawNet2 architecture [29]. Additionally, we compare
our model with two of the best-performing models in the LA
and DF scenarios from the ASVspoof 2021 challenge [11, 36].
The fourth model uses a self-supervised approach, similar to
our proposal, in combination with the AASIST model [19, 28].

Our proposed model (W2V+Conformer with variable
length during evaluation) achieves state-of-the-art results in the
LA scenario, slightly outperforming the Wav2vec 2.0 model
with the AASIST architecture [19]. In the DF scenario, our
model also outperforms all other models from the literature,
achieving an EER of 2.58%, which significantly outperforms

Table 5: Comparison of our system with other systems in the
literature on the ASVspoof 2021 LA and DF evaluation sets in
terms of EER on both sets and min t-DCF on LA. To provide
a fair comparison, we used the same evaluation protocol and
datasets as specified in the ASVspoof 2021 challenge.

LA DF
Model EER min t-DCF EER
Rawnet2 [29] 9.50 0.4257 22.38
STC Antispoofing [11] 1.32 0.2177 15.64
Pindrop Labs [36] 3.21 0.2608 16.05
W2V + AASIST*[19] 1.00 0.2120 3.69
W2V + conformer 0.97 0.2116 2.58
* Averaged result from 3 different training sessions.

the W2V+AASIST model (3.69% EER).
Overall, the results demonstrate that our proposal is effec-

tive in detecting spoofed audio in both the LA and DF scenarios.
Furthermore, the model’s ability to handle variable-length in-
puts during evaluation without altering the audio makes it more
practical for real-world applications, where audio inputs may
vary in length.

6. Conclusions
In this paper, we present a novel anti-spoofing system that can
handle variable length inputs which has achieved outstanding
performance in both the LA and DF scenarios. Our adaptation
of the conformer encoder for spoofing detection has achieved
state-of-the-art results in the LA scenario and outperformed all
other models from the literature in the DF scenario.

One of the novel features of our model is its ability to
handle variable length inputs without altering the audio, which
might be important for practical applications since audio dura-
tion alteration can lead to a loss of information, thus affecting
negatively the performance. We have also demonstrated that the
selected length at which audios are cropped or extended has a
significant impact on the model performance, highlighting the
need of using models that can handle variable sequence-length
utterances.

Furthermore, we have shown that self-supervised models
can enhance the performance of conformers in anti-spoofing
without requiring additional training data. Our experiments
showed a relative improvement in the performance of over 80%
in both the LA and DF scenarios without any data augmentation
techniques.

While our proposed model achieved a remarkable perfor-
mance in the DF scenario, we observed a small decline in per-
formance when we used variable-sized input data during train-
ing. This result warrants further investigation into the charac-
teristics of the datasets used for training and evaluation, the ef-
fects of different DA techniques, and the impact of the model
architecture on its performance. Understanding these factors
will help to improve the effectiveness of our model in order to
achieve better results in the future.
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