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Abstract
Women who have experienced gender-based violence (GBV)
are at an increased risk of developing mental illnesses such
as depression, anxiety, and post-traumatic stress disorder
(PTSD). Recently, Artificial Intelligence (AI) has provided new
tools to assist in mental health clinical diagnosis, including
speech-based detection. However, there is not much work
done on the GBV victim (GBVV) condition detection. This
study aims to identify specific speech features that aid this
detection, analyse the relationship of such results with the user’s
psychological evaluation, and evaluate whether the models rely
on the speaker identity or self-reported emotions to predict the
GBVV condition. Our results indicate that it is possible to
distinguish GBVV with controlled sequelae from non-victims,
which may suggest that such differentiation for GBVV with
more severe mental aftereffects–such as PTSD–may be even
more meaningful. We believe that our work can help future
mental health AI therapy assistants.
Index Terms: Gender-Based Violence, Speech Paralinguistics,
Psychological Conditions, AI Therapy Assistants

1. Introduction
Physical or sexual aggressions are considered manifestations
of GBV, a pervasive problem that affects mostly women and
girls1 in our society. Different forms of GBV consistently
lead to a range of mental illnesses globally, including anxiety,
depression, suicide, PTSD, and substance abuse [1, 2, 3]. This
pervasiveness of mental disorders is high among women who
have suffered from some type of GBV [4, 5]. Their symptoms
can be extremely distressing and can deteriorate a person’s
ability to work, socialize, and carry out daily activities. Notably,
PTSD is the most common sequela among GBVV [3, 6, 7].

Conventional medical assessments to detect mental
conditions often include psychosocial questionnaires and are
generally diagnosed, or confirmed, by a professional. Recently,
AI has given rise to a whole new set of tools to assist in clinical
diagnosis [8], including mental health disorders [9]. Novel
studies address the detection of mental conditions via automatic
speech-based detection [10, 11], being speech a non-invasive
data modality where the state or perception of the patient could
be less influenced by the diagnosis being performed. Even
though these studies are on the rise, there are no studies that
use speech particularly in the detection of the GBVV condition
(GBVVC), a data modality which could therefore be used in
early and non-invasive detection.

1European Institute for Gender Equality. 2023. What is gender-
based violence? Available in: https://eige.europa.eu/
gender-based-violence/what-is-gender-based-violence

Thus, in the present study, we aim to nswer to the following
questions: What is the prevalence of the GBVVC in the
speech? Are there specific speech features that help in such
prediction? Is additional information, such as the speaker
identity or emotions, influencing such detection? By extracting
different feature sets, we aim to determine a suitable one for the
detection of the GBVVC, as well as the possible influence of
emotions or speaker voice traits in such detection.

2. Related work
Research in the use of speech as a source of data and AI
algorithms–such as Machine Learning (ML) or Deep Learning
(DL) models–for the detection of mental health disorders has
skyrocketed in the last decade [11, 12]. Yet, there is a scarce
number of open speech corpora from patients with mental
disorders [12] since clinical data has often privacy restrictions
[11]. A notable exception is the DAIC database [13], that
contains clinical interviews designed to support the diagnosis
of psychological distress conditions such as anxiety, depression,
and PTSD–which are often present in GBVV. But due to speech
from GBVV being very sensitive data, there are no large
databases to work within the literature. Given that many GBVV
suffer from PTSD, techniques to capture data that make the
patients re-live traumatic experiences can only be applied with
great care, as re-living past events can have a negative impact in
the subjects [14]: the so-called re-traumatization. In GBV, this
is called re-victimization [15].

There is only one study [16] to date for the detection of
the GBVVC via speech. On it, we show preliminary results
and ablation studies where we used a subset of data from the
WEMAC Database [17] (26 GBVV + 26 non-GBVV) and
a total of 756 feature samples (1 averaged value per audio),
obtaining a score of 71.53 ± 32.85% in a Leave-One-Subject-
Out (LOSO) scheme. The high variability among users made us
hypothesize that clusters within GBVV and non-GBVV could
exist in the feature domain and–since that sample was really
small–those positive results could be obtained for subjects
whose clusters were well represented in the sample. With our
present work, we extend [16] coping with its limitations and
determining what information the models rely on.

3. Methodology and Materials
3.1. Database

In this study, we use the WEMAC Database [17], a multi-modal
affective computing dataset, which includes Spanish speech
data and self-reported emotional annotations, captured in
laboratory conditions from volunteer women. The participants
were diverse women (ages, education levels, and nationalities)
including GBVV. The collection of data was done after the
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participants experienced 14 audiovisual stimuli with a Virtual
Reality (VR) Headset in an immersive setup for emotion
elicitation. Right after each stimulus, two questions were
answered aloud and recorded. The protocol for volunteer
recruiting in WEMAC [17] was different for non-GBVV than
for GBVV. The first group only surveyed an initial general
questionnaire, whereas the second underwent a more extensive
psychological evaluation that included a PTSD Symptom
Severity Scale-Revised (EGS-R) test [18]. The score for such
test ranges between 0 and 63. For the participants in WEMAC,
only those below 20–i.e. considered as recovered from PTSD–
were allowed to participate, to avoid the risk of re-victimization.

3.2. Preprocessing

WEMAC2 contains data from 39 GBVV and 104 non-GBVV.
We use a balanced dataset of 39 GBVV and 39 non-GBVV, split
into five age-matched age groups, divided equally in GBVV and
NGBVV in each group. In the first age group, defined as G1
(18 − 24), we use data from 12 volunteers, in G2 (25 − 34)
from 14, in G3 (35−44) from 20, in G4 (45−54) from 24, and
in G5 (≥ 55) from 8. The speech signals are down-sampled at
16 kHz and normalized per user using a z-score normalization.
The distribution of 1s windows per group is shown in Table 1.

GBVV NGBVV Total

Fear 9,954 7,296 17,250
Non-Fear 15,549 10,104 25,653

Total 25,503 17,400 42,903

Table 1: Distribution for data samples of 1 s windows used,
according to the self-reported emotional labels.

3.3. Feature Extraction and Selection

The feature extraction process is coded in Python3.
• librosa [19] [20]: 19 features are extracted with the
librosa Python toolkit (13 Mel-Frequency Cepstral
Coefficients, Root Mean Square or Energy, Zero Crossing
Rate, Spectral Centroid, Spectral Roll-off, Spectral Flatness,
and Pitch). The mean and standard deviation for each feature
are aggregated resulting in 38 speech features.

• eGeMAPS [21]: 88 functionals from 13 Low-Level
Descriptors (LLDs) related to speech and audio are extracted
through the openSMILE Python toolkit [22] on its default
configuration, e.g. f0, harmonic features, HNR (Harmonics-
to-Noise Ratio), jitter, shimmer loudness, spectral slope,
formants, harmonics, Hammarberg Index, Alpha ratio, etc.

• VGGish: 128-dimensional embeddings from the output layer
of the VGG-19 network trained for AudioSet [23].

• PASE+ [24]: 256-dimensional features from the PASE+
(Problem Agnostic Speech Encoder+) encoder network, used
as a speech feature extractor.

3.4. Experiments

All the experiments are performed with a Multilayer Perceptron
(MLP)–coded in Python using sklearn– which yielded good
results for the task. It consists of 5 hidden layers with
100 hidden units each, found to be optimal after a delimited

2The database is in process of being fully released by in https://
edatos.consorciomadrono.es/dataverse/empatia.

3Code for feature extraction available in: https://github.com/
BINDI-UC3M/wemac_dataset_signal_processing/tree/
master/speech_processing.

hyperparameter search with layers {5, 7, 10} and neurons
{50, 100, 150, 200}. The training uses 250 epochs maximum–
early stopping when the loss did not improve over 0.001 for 10
epochs–, with the following data splitting strategies:

1. 5-fold cross-validation (5FCV). Random split of the data in
5 folds, using 1 of the 5 splits for testing in each iteration.

2. Leave One Subject Out (LOSO). The data of one subject is
left out during the training phase and then used for testing.
This means that, since we have 78 users, 78 iterations are
made, each with the data of one user as the testing set. This
strategy helps us evaluate how much the model relies on
speaker identification to make its GBVVC prediction.

3. Leave One Video Out (LOVO). The data corresponding to
the speech recorded after the same stimulus for all volunteers
is separated for testing. We have then 14 iterations, one per
speech recorded after each video used in the test set. This
strategy helps us evaluate how much the model relies on the
self-reported emotions to make its GBVVC prediction.

All these training strategies are used in order to predict the
following outputs: 1. Binary GBVV vs. non-GBVV. 2. Binary
fear vs. non-fear emotion–as the dataset is balanced for such
emotion–. 3. Multi-class User ID, to identify the subject (note
that the LOSO split cannot be carried out for this output since
the model cannot predict a label never seen before).

Due to the exceptional results obtained in the 5FCV strategy
(see Table 2), one extra experiment is performed only for the
GBVVC detection, with the librosa feature set and 5FCV
and LOSO strategies, to check for consistency: User ID-
consistent label randomization, that is, giving all the samples
of the same user, the same random label (GBVV/non-GBVV).

Besides that, as the self-reported emotion in WEMAC
was labelled at audio signal level, a majority voting system is
implemented based on the librosa LOSO experiment to give
one final label (GBVV or Non-GBVV) to each new subject the
model has never seen. This is in line with developing subject-
independent future AI therapy assistants.

4. Results
4.1. Librosa

The results for this feature set (Table 2) for the 5FCV are acutely
high, with scores over 90% in all three tasks. Given that the
data split is random, this may result from temporally-contiguous
samples being both in train and test sets.

In the LOSO and LOVO splits, it can be guaranteed that
the model is not trained and tested with parts of the same
audio signal, and regarding the GBVVC, the results are fairly
acceptable. We follow our hypothesis from [16] of the existence
of different clusters of similar users among the GBVV and non-
GBVV. Since the new sample is bigger, we expect to achieve
better generalization and improve the previous score. When
performing the same experiment but using one averaged value
per speech signal instead of values per second, the overall score
is 73.40±27.78% for the 52 users present in [16], and 67.38±
34.17% for all 78 users. That means our result is improved
2.61% while reducing std by 15.43% relative, although the high
variability within the new users included implies a lower score
in the new group. This result is shown per subject in Figure 1.
The first part of the graph corresponds to the accuracy obtained
with the newly added subjects. Despite the high variability, the
overall results show an improvement as we mentioned before.

4Since for half of the iterations there is no positive label on the test set (the
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GBVV vs. Non-GBVV Fear vs. Non-Fear User ID
5FCV LOSO LOVO 5FCV LOSO LOVO 5FCV LOVO

librosa
Acc 99.89 ± 0.04 65.14 ± 30.67 96.80 ± 1.41 94.21 ± 0.41 53.61 ± 9.09 54.28 ± 8.32 96.68 ± 0.23 81.25 ± 4.54

F1 99.91 ± 0.03 70.80 4 97.28 ± 1.22 92.70 ± 0.47 31.69 ± 17.41 39.64 4 98.68 ± 0.23 79.53 ± 4.96

eGeMAPS
Acc 70.52 ± 0.34 51.11 ± 14.8 71.38 ± 0.96 57.69 ± 0.76 59.49 ± 7.43 53.68 ± 12.07 32.50 ± 0.27 28.50 ± 1.35

F1 75.62 ± 0.42 60.74 4 76.39 ± 1.45 28.74 ± 1.16 24.85 ± 7.72 37.05 4 31.09 ± 0.59 25.40 ± 1.45

VGGish
Acc 67.36 ± 0.35 52.91 ± 14.51 66.80 ± 1.41 55.08 ± 0.91 54.47 ± 5.77 51.28 ± 7.01 21.75 ± 0.54 19.21 ± 1.07

F1 72.91 ± 0.49 62.96 4 72.57 ± 1.72 37.41 ± 1.97 34.00 ± 8.84 37.76 4 19.49 ± 0.48 15.63 ± 0.97

PASE+
Acc 89.39 ± 0.30 53.01 ± 21.79 86.70 ± 1.30 61.64 ± 0.48 56.78 ± 8.63 52.72 ± 6.83 65.00 ± 0.79 54.86 ± 2.11

F1 91.16 ± 0.27 63.58 4 88.84 ± 1.27 42.77 ± 1.13 30.03± 11.95 39.58 4 64.88 ± 0.75 53.17 ± 2.12

Table 2: Metrics (mean % ± std %) for the librosa, eGeMAPS, VGGish and PASE+ feature sets with 1s windows as input.

Figure 1: librosa classification results per user, LOSO split
and averaged samples. In green, the accuracy scores obtained
per user with the proposed experiments–78 users–(V2); in red,
those obtained in [16]–52 users–(V1) aligned to the right.

As to the fear/non-fear emotions classification, our model is
slightly above chance in the splits in which it does not observe
samples from the same audio signal in training and test sets, so
we can conclude that the model and features used are not well
suited for such task.

The LOVO experiment eliminates the possibility of the
same audio being in train and test sets simultaneously
while keeping a subject-dependent strategy as in 5FCV. This
experiment draws metrics almost as high as the 5FCV when
predicting the GBVVC, while decreasing a 16.06% w.r.t. user
ID prediction. This suggests that this model relies both in
speaker information as well as in the differences between
GBVV and non-GBVV in order to draw a prediction. It is
relevant to mention, as well, that the little variability shown
when detecting the GBVVC in this experiment proves that the
emotion that the subject is experiencing–which varies from one
video to another–does not affect the prediction of the GBVVC.

4.1.1. Label Randomization

The results shown in Table 3 display the experiments in which
all data from the same subject is given a random label (either
GBVV/non-GBVV) no matter their real label. These results
show how, when the model can train on samples of the
user/audio tested (5FCV), it can still predict the GBVV label
even though it is a random fake one. However, when the model
cannot rely on those similarities (LOSO), it cannot find any
relation between the evaluated user and those of its group, now
that those groups are not real.

These results imply that there are indeed underlying
characteristics in speech that distinguish GBVV and Non-
GBVV and can be captured by ML models.

user is non-GBVV or the video non-fear), the F1-score cannot be calculated per
iteration and averaged; thus it was calculated on the concatenated predictions of
all iterations and, therefore, standard deviation (std) cannot be computed.

5FCV LOSO

Acc 99.83± 0.06 42.37± 30.08

F1 99.85± 0.05 49.38 4

Table 3: Performance scores (%) for the librosa feature set
when randomizing the labels for the task of GBVVC prediction.

4.1.2. Majority Voting (MV)

Aiming to settle foundation for speaker-agnostic AI therapy
assistants, all 1 s predictions are combined in a MV system
(MVS) which gives a final label (GBVV or not) per user. Its
accuracy for all 78 users is 73.08%, improving the results when
the input was both 1 s samples and the averaged value.

4.1.3. Correlation with Psychological Evaluation

With the aim of explaining the reason behind the variability
shown in Figure 1, the correlation between the accuracy of the
presented model per user with their psychological evaluation
is explored (Figure 2)5. The correlation map is done between
the users of the central region of Figure 1–those with high
variability, without extreme values of accuracy below 10% or
over 90%. Given the limitations of this result–the psychological
evaluation was only available for GBVV who have their trauma
and aftermath under control–the matrix shows some correlation
(0.36) between the EGS-R score and the accuracy obtained
with the model, implying that it is possible that pre-clinical
PTSD symptoms are, somehow, reflected in the GBVV’s voice
and that it helps the model to classify them with a higher
accuracy. This suggests that if we can detect GBVV who
are not traumatised and have controlled sequelae, then the
differentiation between victims with actual PTSD and non-
victims may even be more significant.

4.2. eGeMAPS

The features from eGeMAPS feature set were chosen by their
authors because of their potential with affective physiological
changes in voice production, their theoretical meaning and
their proven value in former studies [21]. Regarding emotion
classification, these features provide the best results in the
LOSO split according to the accuracy metric. However,
F1 results show that the model could be using the a priori
distributions to maximise accuracy. For speaker identification
the model decays abruptly, so eGeMAPS cannot identify the
user either in this problem (nor was this intended by its authors).

In the GBVV vs non-GBVV classification, the results are
lower compared with librosa, but still interesting, given the

5The psychological consequences category includes and implies the presence
of one or more of the following categories: past dissociation, self-harm,
depression, anxiety, eating disorder.
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Figure 2: Correlation map between physical and psychological
conditions and the model’s accuracies presented in Figure 1.

fact that the features are not meant for identifying the speaker
and yet the performance is high (∼ 70%) in both 5FCV and
LOVO settings. This supports the hypothesis of noticeable
differences in the voice of those 2 groups.

4.3. VGGish

Since this is a feature set intended for general audio, and
not speech specific [23], it makes sense that it provides the
lowest metrics: it does a rather random classification between
fear and non-fear emotions and gives poor results for user ID.
However, it still finds a distinction between GBVV and non-
GBVV within the 5FCV and LOVO splits, backing up once
again the hypothesis of the differences between those groups.

4.4. PASE+

This feature set, designed to be problem agnostic, works
better than eGeMAPS and VGGish, but not than librosa.
However, it still gets its highest score for the GBVV vs. non-
GBVV task, just as the previous feature sets.

5. Discussion
In the experiments presented in this paper, summarized in Table
2, our model is relatively capable of distinguishing between
GBVV and non-GBVV. The scores obtained depend highly on
the feature set as well as on the data split chosen:
• librosa achieves the highest scores. They suggest that this

model relies both in speaker identification and differences
between GBVV and Non-GBVV for such classification.

• eGeMAPS and VGGish, although unable to identify the
speaker and, thus, to rely on that information; still manage
to give good predictions of the GBVVC in the 5FCV and
LOVO experiments.

• PASE+ outperforms the previous two, but not librosa.
It scores high in the prediction of the GBVVC, presumably
relying as well on speaker identification.

Comparing the presented results with our prior work in this
topic [16], confirms the hypothesis on the existence of clusters
within groups that may not be well represented in the sample
due to the lack of data. It does so by increasing their overall
accuracy by 2.61% when enlarging the sample. However,
a user-by-user comparison makes evident that some of them
improve whereas others, in fact, worsen. This suggests that
the use of an ensemble model with some kind of bootstrapping
that uses several models trained with different subgroups of the
population could improve the obtained metrics in the LOSO

strategy, which will be considered for future work. Also,
ID-consistent randomization of the labels was implemented
to rule out the possibility that the model was relying on the
identification of the speaker to decide about the GBVVC.

Working towards an AI therapy assistant capable of
predicting the GBVVC even when new subjects do not identify
as such, an MVS was implemented. Such system was capable of
outputting a final label for each user without prior information
on her speech (LOSO split) with a ∼ 73% confidence.

To understand what the model was basing its decision
on, for the GBVV detection, the correlation between accuracy
and physical and psychological conditions per GBVV was
explored. Although such correlation is very limited due to
the previously discussed characteristics of the GBVV, it shows
some correlation between the pre-clinical symptoms of PTSD
(EGS-R) and the accuracy of the prediction, which constitutes
an important branch for future work: exploring correlations
of actual PTSD-GBVV. However, this poses ethical constraints
and thorough care should be put to avoid re-victimizing them.
Besides, non-GBVV evaluations would also be relevant so
as to be sure they do not have PTSD or other psychological
conditions due to any other traumatic event.

6. Conclusions
Our current study shows that it is possible to distinguish GBVV
from Non-GBVV by the extraction of features of their speech.
To that purpose, the librosa feature set has been proven
the best and, although the emotions felt by the users at the
moment of speech do not affect the GBVVC recognition,
the experiments suggest that the model does rely slightly
on user identification. However, the model is still capable
of making an acceptable distinction when the ID factor is
removed and a MVS was implemented to classify new users
with a confidence of 73.08%. Regarding the prevalence of
psychological conditions in the speech of GBVV and being
this the reason to be able to classify them, the results of the
correlations point to such direction. However, they are not fully
conclusive since the GBVV we are working with are those with
controlled aftermath, so we should take into account that our
scope is limited. For future work, we leave to explore multi-
task learning and adversarial training strategies to disentangle
the speaker information from the GBVVC, in order to develop
speaker-agnostic GBVVC detection; as well as the use of
personalization techniques to study whether different speakers
have particular ways to express the GBVVC in speech. We will
also explore the use of linguistic features alongside the acoustic
ones and the impact of the silence windows in the classification.

This paper presents a novel study in a topic which has not
been deeply studied before, to the knowledge of the authors, and
gives promising results that open the way for GBVV assistance
in mental health therapy and early diagnosis in a non-invasive,
non-re-victimizing way.
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