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Abstract
State-of-the-art spoken language understanding (SLU) models
have shown tremendous success in benchmark SLU datasets,
yet they still fail in many practical scenario due to the lack of
model compositionality when trained on limited training data.
In this paper, we study two types of compositionality: novel
slot combination, and length generalization. We first conduct
in-depth analysis, and find that state-of-the-art SLU models of-
ten learn spurious slot correlations during training, which leads
to poor performance in both compositional cases. To miti-
gate these limitations, we create the first compositional splits of
benchmark SLU datasets and we propose the first compositional
SLU model, including compositional loss and paired training
that tackle each compositional case respectively. On both
benchmark and compositional splits in ATIS and SNIPS, we
show that our compositional SLU model significantly outper-
forms (up to 5% F1 score) state-of-the-art BERT SLU model.
Index Terms: spoken language understanding, compositional
generalization

1. Introduction
Spoken language understanding is an important component of
task-oriented dialog systems powering today’s voice controlled
AI agents, and chat bots. Intent classification and slot tagging
are two main sub-tasks in SLU [1, 2, 3, 4, 5]. Human language
is inherently compositional [6], and humans possess the ability
to understand infinite new utterances by focusing on relevant
informative sub-parts of the utterance which were learned pre-
viously [7]. In this work, we consider informative sub-parts of
an utterance containing slots. For example, humans can under-
stand slot value “boston” is of the slot type/label B-to-city from
the utterance “show flights to boston”. Similarly, from another
utterance “find flights from atlanta”, they can learn “atlanta”
has the slot type B-from-city. If presented with a new utterance
“show flights from atlanta to boston”, humans can still infer
the correct slot labels of “atlanta” and “boston”, even though
they have never seen these slots appear together before in the
same utterance. Despite their success, current state-of-the-art
SLU models [8], based on pre-trained language models [9, 10],
struggle to perform such simple compositional generalization
for slot tagging, as we demonstrate in this work.

In this paper, we investigate two main aspects of slot com-
positionality; (a) identifying a novel combination of slot types
in an utterance which was never seen during training, and (b)
identifying more number of slot types per utterance than any
training utterance, which we refer to as length generalization.
It is vitally important for SLU models to perform both these
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i|O need|O return|O flight|O from|O philadelphia|B-from-city

show|O me|O flights|O to|O boston|B-to-city on|O
september|B-depart-month second|B-depart-day

show|O me|O the|O flights|O from|O boston|B-from-city to|O atlanta|B-to-city

i|O would|O like|O to|O book|O a|O flight|O from|O charlotte|B-from-city
to|O baltimore|B-to-city on|O september|B-depart-month

twenty|B-depart-day sixth|I-depart-day

Training Utterances

Utterance 1

Utterance 2

Compositional Test Utterances

(a) Novel Slot Combination Split: Test utterance has a novel combination of slot types 
(B-from-city, B-to-city) that does not appear together in any training utterance

(b) Length Generalization Combination Split: Test utterance has more slot types than 
any training utterance

Figure 1: Example Utterances in Two Types of Slot Composi-
tionalities

types of compositional generalization due to the following rea-
sons. Firstly, in domains with a large number of slots (e.g.
airline reservation), it can be both time-consuming and expen-
sive to collect and annotate training utterances corresponding
to each possible combination of slots. Secondly, for resource
constrained cold-start skill developers [11], it is cheaper and
easier to annotate a small number of short utterances (with just
one or two slots) for training, than longer utterances with many
slots which the SLU model may encounter after deployment.
Building compositional SLU models which can generalize well
under both these settings is vital for both scalable development,
and reliability of future AI agents.

Due to a lack of compositional objective during training,
existing SLU models fail to learn the correct dependence of
slot words on the relevant informative words that convey their
meaning. Instead, they often rely on spurious slot correlations
to make their decision. When these models encounter an utter-
ance with a novel combination of slots unseen during training,
they fail to exploit this learned correlation, hence do not gener-
alize. When the models encounter longer utterances with many
slots per utterance, than they have seen during training, they of-
ten fail due to poor quality slot representations under a longer
sentence context. While some techniques have been proposed
to improve compositionality of sequence-to-sequence models in
small synthetic datasets [12, 13, 14, 15], these are computation-
ally expensive to train, and hard to scale on real-world datasets.

Main contributions: In this work, we improve compositional
generalization of SLU models by using explicit compositional
objectives during training, and develop novel data augmentation
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technique that helps generalization to longer utterances. Our
proposed methods are practical and enable SLU models to scale
to large real-world datasets. Our main contributions are:

1. We create the first compositional splits of benchmark SLU
datasets (ATIS, and SNIPS). These splits can be used as a new
benchmark to evaluate compositional generalization proper-
ties of SLU models.

2. We explore two types of slot compositional generalization,
novel slot combination, and length generalization, and con-
duct in-depth analysis to investigate why existing SLU mod-
els perform poorly in both cases.

3. We propose a new compositional loss that improves composi-
tionality of SLU models to utterances with unseen slot com-
binations, and a new paired training technique that improves
length generalization of SLU models.

4. We show that our new compositional SLU model can achieve
significant (up to 5%) improvement in slot tagging F1 score
on our new compositional splits.

2. Compositional Benchmark Datasets
In this section, we propose our method to create compositional
splits of benchmark SLU datasets.

In order to systematically evaluate compositional gener-
alization of SLU models, we start with two benchmark SLU
datasets. The first benchmark dataset ATIS [16] contains utter-
ances related to airline reservation. We consider the data split
from [17, 1] containing 4,978 training , and 893 test utterances
in the standard split (Ttrain, Ttest). We also use the second
benchmark dataset SNIPS [18] containing various utterances
in entertainment, weather, and restaurant domains. In the stan-
dard split SNIPS has 13,784 training, and 700 test utterances.
For each dataset, we create two compositional train/test splits
by selecting a subset of utterances from their standard train/test
splits.
A) Novel Slot Combination Split: Human can easily identify a
slot type in isolation just by focusing on most informative words
which are used to describe a slot, even when presented with an
utterance having a new combination of two or more slots types
that were not seen during learning (training) phase (also referred
as systematicity in cognitive science [7]). To test this aspect of
compositional generalization, we create a train/test split where
none of the combination (or set) of slot types present in a test ut-
terance appear during training. We generate this split (referred
as novel slot combination) using the following steps: (a) We
remove from standard training set all utterances which have a
combination of slot types that appear in the standard test set.
We do not remove utterances with a single slot since these are
fundamental examples from which the model learns the true se-
mantic meaning of such slots. (b) In order to better separate
compositional generalization with OOV generalization [19, 20],
we replace any OOV slot values with a randomly selected slot
value (but of the same slot label) from the training set to gen-
erate the final test set. Figure 1 shows example utterances from
our novel slot combination split of ATIS dataset.
B) Length Generalization Split: Sequence based neural net-
work models are inherently poor at generalization to longer se-
quences than what it observed during training [21, 22, 23]. Note
that, the informativeness of an utterance directly depends on the
number of slots present in the utterance, but it does not neces-
sarily depend on actual length of the utterance. Hence, to test
length generalization we consider the number of slots in the ut-
terance to generate the split. Increasing the number of slots in an
utterance also naturally increases its length. We create composi-

tional train/test splits to test length generalization as follows: (a)
From the standard training set, we only select utterances which
have number of slots less than or equal to a fixed integer k. (we
use k = 2 in our experiments) (b) We also remove from the test
set utterances with slot combinations in the training set and sub-
stitute OOV slot values as before. We test if an SLU model has
the ability to identify slots when number of slots in the utterance
can be much larger than that observed during training. Figure 1
shows an example utterance from our ATIS length generaliza-
tion split. Table 1 reports the split sizes.

3. Our Method
In this section, first we describe the baseline SLU model which
we consider in our experiments, and explore why they have poor
compositionality. Later, we propose new techniques to improve
compositional generalization of SLU models. We use the fol-
lowing notations: Let x = (x1, . . . , xn) denote an input utter-
ance, where words/tokens xi ∈ V, the vocabulary. Each input
token xi is annotated by a slot label yi ∈ Y, the slot vocabulary.
We consider slot labels in the standard IOB format, where label
‘O’ denotes the word/token that does not belong to any slot.

3.1. Baseline SLU Model Analysis

Large pre-trained language models have been shown to be suc-
cessful in most natural language understanding tasks. Our base-
line SLU model is based on one such model BERT [9], which
also achieves state-of-the-art on benchmark SLU datasets. Our
model is similar to the implementation in [8]. We train the
model jointly on intent classification and slot tagging tasks us-
ing the objective: L = Lintent + λ1Lslot, where Lintent is the
intent classification loss, Lslot is the slot tagging loss, and λ1 is
a hyper-parameter to balance the losses.

Key issue: Although the BERT baseline model can achieve
SOTA on standard splits of benchmark ATIS and SNIPS
datasets, we observe that it often suffers significant drop in slot
tagging performance on our compositional splits. Recall that in
BERT, the self-attention layer of the transformer computes the
attention distribution for each attention head h as follows:

Ph = Softmax

(
1√
d
HWQ

h (HWK
h )T

)
(1)

where WQ
h ,WK

h are the query, and key projection matrices of
the h-th attention head, H is the output hidden layer vectors
of previous layer, and d is the head dimension. By plotting
this attention head distribution we can observe how much in-
formation each token contributes to the final slot label output
logit. A human identifies a slot type by focusing on the sur-
rounding most informative words in the utterance that help to
convey the semantic meaning of the slot. One may expect that
the final transformer layer in SLU model performs the same by
providing higher attention weights to informative words corre-
sponding to a slot value. However, we observe that this is not
always the case. For example, as shown in Figure 2 in utter-
ance “play rock from the eighties”, in order to identify the slot
value “rock”, the BERT SLU model gives more attention to a
different slot “eighties”, than informative context word “play”.
This could indicate that BERT SLU model often learns spurious
correlations among context and slot words. Therefore, when
such slots appear in an utterance with a new combination of slot
not seen during training, the BERT model may fail to identify
them. This results in poor slot tagging performance of BERT
SLU model in our compositional splits (Section 4).
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Attention distribution for 
BERT SLU

Attention distribution for 
Compositional SLU (Ours)

HighLow

Query play rock from the eighties
Slot labels O B-genre O O B-year

Figure 2: Visualization of the attention map (averaged over
heads) for SNIPS utterance using baseline BERT SLU model
(left), and our Compositional SLU model (right). Blue indi-
cates high attention weights, and Red indicates low weights.
Green box highlights the attention distribution correspond-
ing to slot words. Compositional SLU model focus more on
informative words to infer slot labels, and reduces spurious
slot correlations, compared to BERT SLU model.

3.2. Our Compositional SLU models

We now describe two main techniques that we show can im-
prove compositional generalization of SLU models.
1. New Compositional Loss to Improve Slot Combina-
tion Compositionality: We develop a new compositional loss
which reduces spurious slot correlation and encourages the SLU
model to focus its attention on informative context words. In-
tuitively, if two words have different slot labels, they should
be identifiable based on a disjoint set of words. For exam-
ple, for the utterance “play rock from the eighties” (Figure
2), to identify slot label for the word “rock” it is sufficient
to focus on context words Srock = {play, rock}. To identify
slot label for word “eighties” it is sufficient to focus on words
Seighties = {play, rock, from, eighties}. Note that these two
sets of words are different. Our compositional loss is a sum of
two loss functions as follows:

Lslot-pair =
1

N1

∑

h

∑

i,j:yi ̸=yj ̸=O

KL(Ph
i , P

h
j ) (2)

Lnon-deg =
1

N2

∑

h

∑

i:yi ̸=O

KL(Ph
i ,1i) (3)

where Ph
i is the attention probability distribution corresponding

to the token xi, head h of the final transformer layer, 1i is the
indicator distribution over all input tokens with 1 at position i,
and 0 elsewhere, and N1, N2 are normalizing constants. The
slot pair loss Lslot-pair encourages the attention distribution for
two slot words xi, xj with different slot labels yi, yj to focus on
a disjoint set of context words. The second non-degenerate loss
Lnon-deg prevents the slot pair loss to converge to a degenerate
solution where each token mainly focuses on itself. The final
compositional loss for training our SLU model is given by:

L = Lintent + λ1Lslot − λ2Lslot-pair − λ3Lnon-deg (4)
where λ1, λ2, λ3 are hyper-parameters.
2. Paired Training to Improve Length Generalization: The
compositional loss enables the SLU model to better general-
ize to utterances with new combination of slots not seen dur-
ing training (Section 4). However, the model still perform
poorly in length generalization splits. Length generalization
has been shown to be particularly difficult for both sequence
generation [21, 24], and multimodal tasks [25]. We hypothe-
size that the model fails to generate good hidden state repre-

sentations when presented an utterance with many slots, greater
than those learned at training. To mitigate this problem, we
develop an effective data augmentation approach we refer as
paired training. Previously, a data augmentation approach
GECA has been used to improve compositional generalization
in sequence-to-sequence models [21]. However, their perfor-
mance on length generalization remained poor since it only re-
places words/phrases in existing training sentences, and does
not necessarily produce very long sentences. In our approach,
we randomly select two distinct training utterances of the same
intent but a disjoint combination of slots, and concatenate them
with a period separator to form a new training sample. This ex-
poses the model both to longer sequences, as well as new com-
bination of slots not present in the original training set, result-
ing in better length generalization. Note that, neuro-symbolic
approaches have been shown to perform effective length gener-
alization in seq-to-seq models [14, 15]. However, these models
are difficult to train, and they do not scale to real-world datasets
which don’t follow strict grammar rules. Model based data aug-
mentation approach has also been explored for improving ro-
bustness of SLU models [26]. However, this requires additional
NL template information for each intent/slot which is difficult
to obtain for large domains (e.g. ATIS).

4. Experiments
4.1. Settings and baselines

We train SLU models jointly for intent classification, and slot
tagging tasks. Our evaluation metrics are slot tagging F1 score,
and intent accuracy. Incorporating dependency parse informa-
tion is known to improve compositional generalization of neural
networks [27, 28]. We test an advanced baseline model (BERT
SLU + parse tree) which modifies the original attention scores
in the final transformer layer with a weight inversely depen-
dent on token distance on dependency tree. Intuitively, tokens
which are further away in the dependency tree are assumed to
be less informative, and given lower attention scores. We also
test a third baseline (BERT SLU + relative pos emb) which
incorporates relative position embedding in BERT’s attention
computation [29]. In seq-to-seq tasks, it has been shown that
relative position embedding helps in length generalization [30].
Parameters: Our baseline and compositional SLU models are
fine-tuned from BERT model bert-base-uncased [9]. We use
hyper-parameters: batch size 32, learning rate ∈ {10, 5} ×
10−5, number of training steps N ∈ {4K, 5K, 6K}, λ1 = 1.
For compositional models we use λ2 = 0.01, λ3 = 0.1.

4.2. Results

Results on novel slot combination split: First, we compare
the performance of SLU models on the novel slot combination
splits, where the test utterances have a distinct combination of
slot types which doesn’t appear together in training. Table 1
presents the results (averaged over 5 runs with different seeds).
The first row corresponds to the performance of BERT SLU
model when trained on the full standard training set Ttrain. This
acts as an upper bound for the model performance. When the
models are trained on the smaller compositional training set,
the performance of the baseline models drop since they do not
generalize well to the test sets. Observe that, in SNIPS com-
positional test set, the baseline performance drops about 3% F1
score. The intent accuracy also drop around 1%. BERT com-
bined with dependency parse tree, fails to improve slot tagging
performance, but it improves the intent accuracy. BERT with
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Table 1: Performance on Our Compositional Splits. The (train, test) sizes of Novel Slot Combination Split are (1229, 496) in ATIS
and (1939, 600) in SNIPS. Sizes in Length Generalization Split are (1494, 163) in ATIS and (7107, 253) in SNIPS.

Model \ Dataset

ATIS SNIPS

Novel Slot Combination Split Length Generalization Split Novel Slot Combination Split Length Generalization Split
Slot (F1) Intent (acc) Slot (F1) Intent (acc) Slot (F1) Intent (acc) Slot (F1) Intent (acc)

Full BERT SLU (upper bound) 98.83 ± 0.05 98.39 ± 0.02 97.97 ± 0.07 99.39 ± 0.03 97.17 ± 0.05 98.67 ± 0.02 97.51 ± 0.07 99.62 ± 0.02

BERT SLU 97.46 ± 0.05 97.72 ± 0.09 90.30 ± 0.25 96.32 ± 0.02 94.11 ± 0.27 97.17 ± 0.08 92.29 ± 0.69 99.13 ± 0.46
BERT SLU + relative pos emb 94.83 ± 0.06 95.16 ± 0.15 91.69 ± 0.18 93.87 ± 0.03 94.27 ± 0.15 96.00 ± 0.08 89.77 ± 0.51 98.85 ± 0.12
BERT SLU + parse tree 97.64 ± 0.06 96.57 ± 0.03 92.27 ± 0.12 96.07 ± 0.30 94.12 ± 0.17 98.33 ± 0.02 92.36 ± 0.21 98.82 ± 0.03

Comp. SLU (Ours) 98.10† ± 0.12 97.78 ± 0.41 94.93† ± 0.68 96.93† ± 0.30 95.37† ± 0.42 97.83† ± 0.59 95.63† ± 0.92 99.64† ± 0.11
- Comp. Loss 97.81 ± 0.14 96.97 ± 0.03 94.25 ± 0.12 96.87 ± 0.18 95.05 ± 0.10 97.33 ± 0.10 95.61 ± 0.85 99.60 ± 0.03
- Paired Training 97.78 ± 0.04 96.98 ± 0.06 91.82 ± 0.13 97.79 ± 0.56 95.13 ± 0.13 96.17 ± 0.07 92.11 ± 0.32 98.81 ± 0.02

* Full BERT SLU is trained using the whole standard training dataset, which indicates the performance upper bound.
† implies a significant improvement (p-value < 0.05) using t-test over baseline BERT SLU model.

Table 2: Slot Error Analysis in Length Generalization Split.
L denotes the number of slots/utterance in test split

L
ATIS (F1 score) SNIPS (F1 score)

BERT SLU Comp. SLU BERT SLU Comp. SLU

2 76.0 88.46 100.0 100.0
3 89.35 94.01 93.26 95.43
4 93.56 95.58 93.56 95.05
5 91.34 92.19 93.02 97.78
6 95.77 95.77 91.49 96.91
7 92.86 100.0 N/A N/A

* In our SNIPS test set there are no utterances with more than 6 slots.

relative position embedding improves slot tagging slightly on
SNIPS, but has poor intent accuracy. In contrast, our compo-
sitional SLU model improves slot tagging performance around
1% over baseline while maintaining similar intent accuracy. In
ATIS, we observe 1% drop in F1 score of baseline model in test
set. Our compositional model still improves performance over
baseline. Note that, most models seem to perform better compo-
sitional generalization in ATIS split, than on SNIPS split. This
is because, although both ATIS and SNIPS test sets have similar
number of slot combinations (210 in ATIS, and 201 in SNIPS),
in the compositional training set ATIS has much larger number
of distinct combinations 661, versus only 406 for SNIPS. This
helps models in ATIS learn better compositionality.
Results on length generalization split: Next, we investigate
the ability of SLU models to perform length generalization. For
this experiment we consider the split with maximum two slots
per training utterance. Table 1 compares the model performance
for SNIPS, and ATIS splits. Recall that, the top row indicates
an upper bound on performance when the baseline model is
trained on full training set Ttrain. We observe that when trained
on compositional training set, the baseline model’s slot tag-
ging performance drops significantly; 5% for SNIPS, and 7%
for ATIS. The intent accuracy suffer 3% degradation in ATIS,
and 1% in SNIPS. BERT with dependency parse information
show a small improvement. BERT with relative position em-
bedding improves slot tagging in ATIS, but not in SNIPS in-
dicating poor generalization across datasets. In contrast, our
compositional SLU model significantly improves slot tagging
performance, with about 5% F1 score in ATIS and 4% F1 score
in SNIPS. The models also achieve similar intent accuracy as
baseline. We further analyze the distribution of F1 scores w.r.t.
the number of slots per test utterance in Table 2. We observe
our compositional model consistently improves F1 score over
baseline model, irrespective of the number of slots/ utterance.
Results on standard split: We also train our compositional
model on full standard training set Ttrain, and evaluate on stan-
dard test set Ttest for both ATIS and SNIPS. In Table 3, we
compare the performance with baseline BERT SLU trained

Table 3: Performance on Standard Splits

Model \ Dataset
ATIS SNIPS

Slot (F1) Intent (acc) Slot (F1) Intent (acc)

BERT SLU 98.25 ± 0.02 97.8 ± 0.03 96.57 ± 0.16 98.97 ± 0.02
Comp. SLU 98.42† ± 0.09 98.2† ± 0.02 96.85† ± 0.09 99.11† ± 0.07

* For this experiment on SNIPS, we use the bert-base-cased model which has
a slightly better performance. † implies a significant improvement (p-value
< 0.05) using t-test over baseline BERT SLU model.

with same hyper-parameters. We observe that the composi-
tional model achieves similar or better accuracy and F1 scores
than baseline model in both datasets. Recall that, the standard
train/test split in these benchmark datasets were generated ran-
domly and hence they have a similar distribution. So it is ex-
pected that the BERT SLU model can have comparable perfor-
mance to a compositional SLU model. However, as we dis-
cussed in Section 1, in real world cold-start settings this is often
not the case which necessitates our compositional SLU model.

Ablation study: Finally, we perform an ablation study to better
understand the contribution of each component of our compo-
sitional SLU model. The two bottom rows in Table 1 show
the performance of our model when individual components (a)
compositional loss, and (b) paired training are removed. We
observe that for novel slot combination split, the model suffers
similar drop in F1 score in test set, when the above two compo-
nents are removed. This indicates they have a similar effect on
the model for this split. However, in length generalization split
of both datasets, the compositional model suffer significant drop
(around 3%) in F1 score when paired training is removed, but
suffer smaller degradation by removing the compositional ob-
jective. This supports our hypothesis that paired training plays
a significant effect in length generalization.

5. Conclusion

In this work, we demonstrate that SOTA SLU models based
on pre-trained language models have poor generalization when:
(1) an utterance has a novel combination of slots unseen during
training, and (2) when an utterance has more slots than in any
training utterances; scenarios which the models often encounter
in practice. We develop a new compositional SLU model to
tackle these issues. First showing that, by adding a new compo-
sitional loss, the model’s attention distribution can better focus
on informative words, thereby improving model’s generaliza-
tion to novel slot combination. We further propose a new paired
training data augmentation technique which greatly improves
length generalization. In our future work, we want to further
explore the impact of OOV slot values on compositionality.
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