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Abstract
Dysarthria is a speech disorder caused by improper coordina-
tion between the brain and the muscles that produce intelligi-
ble speech. Accurately diagnosing the severity of dysarthria
is critical for determining the appropriate treatment and direct-
ing speech to suitable Automatic Speech Recognition systems.
Recently, various methods have been employed to investigate
the classification of dysarthria severity-levels using advanced
features, including STFT and MFCC. This study proposes uti-
lizing Web-scale Supervised Pretraining for Speech Recogni-
tion (WSPSR), also known as Whisper, encoder module for
dysarthric severity-level classification using transfer learning
approach. Whisper model is an advanced machine learning
model used for speech recognition, which is trained on a large
scale of 680,000 hours of labeled audio data. The proposed
approach demonstrated a high accuracy rate of 98.02%, sur-
passing the accuracies achieved by MFCC (95.2%) and LFCC
(96.05%).
Index Terms: Dysarthria, Encoder-Decoder Transformer,
WSPSR (Whisper).

1. Introduction
Dysarthria is a common speech disorder that can affect the dy-
namic movements of the articulators, responsible for the pro-
duction of intelligible speech, and upper respiratory system,
resulting in difficulty producing natural speech. This disorder
can occur as a result of various neurological conditions, such
as cerebral palsy, muscular dystrophy, stroke, brain infection,
brain injury, facial paralysis, tongue or throat muscular weak-
ness, and nervous system disorders. These conditions cause an
imbalance in coordination between the brain and the muscles
involved in speech production, essential for speech production
mechanism, leading to a range of speech disorders, including
dysarthria, stuttering, apraxia, and dysprosody [1].

Accurate classification of dysarthric severity-level has im-
portant clinical applications. Personalised treatment plans can
be developed by healthcare professionals based on the severity-
level, ultimately leading to improved outcomes for individuals
suffering from dysarthria. Moreover, such systems may be able
to detect dysarthria on an early stage providing an alternative
to diagnosis in localities, where healthcare services are unavail-
able. In addition, the severity-level classification has applica-
tions in Automatic Speech Recognition (ASR) systems, divert-
ing a speech signal based on dysarthric severity-level to an ap-
propriate ASR system [2].

In the recent past, researchers have extensively utilized
the Short-Time Fourier Transform (STFT) [3] and several
other acoustical parameters to classify the severity-levels of
dysarthria [4]. To capture the global spectral envelope infor-
mation of speech signals, state-of-the-art feature sets, such as

Mel Frequency Cepstral Coefficients (MFCC) have been com-
monly used [5]. Additionally, glottal excitation source parame-
ters from quasi-periodic sampling of the vocal tract system have
also been used [6]. These feature sets have been selected be-
cause they are known to capture perceptual information and ef-
fective in characterizing dysarthric speech. Recently, transfer
learning approaches have been explored for the problem. In par-
ticular, Bidirectional Long-Short Term Memory (BLSTM) have
been used to classify dysarthric speech into intelligible (I) and
non-intelligible (NI) [7]. In [8], ResNet-50 model pretrained on
the ImageNet dataset is used for a transfer learning approach
on a CNN classifier to classify speech into two classes as done
in [7]. However, pretrained ResNet-50 doesn’t encompass the
sequential information as it treats the audio signal as an image,
moreover, the training is done using ImageNet, which is a vi-
sual dataset. This study proposes a transfer learning approach
making use of the pretrained Web-scale Supervised Pretraining
for Speech Recognition [9], also referred to as Whisper, for
dysarthric severity-level classification. Whisper model is his-
torically trained for the purpose of speech recognition.

The whisper model is trained by scaling weakly supervised
audio paired with its transcripts scraped from the Internet. As
a result, the dataset produced is extremely diversified, encom-
passing a wide range of sounds from several different environ-
ments, recording setups, speakers, and languages, making it a
suitable model for speech applications using transfer learning.
This study proposes using the transformer encoder of the Whis-
per model, which is pretrained on a large speech dataset, to
classify dysarthric speech from UA Speech Corpus, into four
classes based on severity. The contributions of this paper are as
follows:

• Proposes end-to-end pretrained Whisper transformer en-
coder, using a transfer learning approach to classify
dysarthria into four classes of severity.

• Experimental performance evaluation on three whisper archi-
tectures, namely, tiny, base, and small.

• Accurate diagnosis of the severity-level is crucial in deter-
mining the course of treatment for dysarthria, and it is nec-
essary to be able to achieve this even for shorter durations of
speech. Therefore, our study includes an analysis of latency
periods, and a comparison with state-of-the-art feature sets.

• Since research on dysarthria requires high performance, it is
crucial to evaluate the precision of model retraining. This
study reports the experiments for this purpose.
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2. Proposed Work
2.1. Introduction to Whisper Model

Whisper is pre-trained on a massive amount of labelled audio-
transcription data, in contrast to many of its predecessors, such
as wav2vec 2.0 [10], which is pre-trained on unlabelled au-
dio data. Whisper is an open source pre-trained automated
speech recognition (ASR) model released in September 2022,
at https://github.com/openai/whisper. Whisper
is derived from the acronym WSPSR, which stands for Web-
scale Supervised Pretraining for Speech Recognition [9]. Whis-
per essentially highlights the fact that training on a substantial
and varied supervised dataset and focusing zero-shot transfer
significantly improves the endurance and performance of the
system.

The Whisper model is an encoder-decoder Transformer ar-
chitecture similar to that described in [11]. It has been trained to
perform various tasks, such as transcription, voice activity de-
tection, alignment, translation, and language identification on
audio samples. The input audio is broken into 30seconds seg-
ments, and if necessary, padded before being resampled at a
frequency of 16 kHz. A Log-Mel Spectrogram with 80 chan-
nels is then computed using a window length of 25ms and a
stride of 10ms, as outlined in [9].
2.2. Whisper models

Whisper has five models, each having increasing model size,
namely, tiny, base, small, medium, and large. Whisper mod-
els of different number of trainable parameters and number
of transformer encoder-decoder layers are shown in Table 1.
Whisper encoder features are fixed dimensional vectors ob-
tained at the end of the encoder module of the size 1× 1500×
384, 1× 1500× 512, 1× 1500× 768, 1× 1500× 1024, and
1×1500×1280 for tiny, base, small, medium, and large model,
respectively. The size of vectors obtained increases as the size
of the whisper model increases.

The second dimension of the fixed vector remains the same
for all models as it encompasses the temporal values for the
input audio signal. In Section 4, we have analysed the effect
of Whisper model size on the performance of our system using
tiny, base, and small models.

Table 1: Whisper Models. After [9]

Whisper Model Layers Width Heads Parameters
Tiny 4 384 6 39M
Base 6 512 8 74M
Small 12 768 12 244M

Medium 24 1024 16 769M
Large 1 32 1280 20 1550M

2.3. Dataset used to train Whisper

The dataset created to train the whisper model used consists
of 680,000 hours of audio from which 117,000 hours covers
other languages, and 125,000 hours of the dataset is translation
from other languages to English [9]. This results in a diversified
dataset, encompassing a wide range of sounds from several dif-
ferent environments, recording setups, speakers, and languages.
The huge volume and enormous variety in audio quality cer-
tainly helps in the training the model with high performance
and robustness.

This study proposes a transfer learning approach for the
classification of dysarthric severity-levels. Specifically, we hy-
pothesize that the Transformer Encoder module of the pre-
trained Whisper model captures all relevant information for this

task. To test this hypothesis, we utilized the pre-trained Whis-
per encoder combined with a CNN acting as a classifier, utiliz-
ing the learned representations from the Whisper encoder’s last
layer, Whisper encoder features.

Transfer learning has proven effective in various natural
language processing and speech recognition tasks. Leverag-
ing the pre-trained Whisper encoder enables us to benefit from
its ability to extract high-level features from audio data. We
chose this specific approach as the variability of the dataset used
for training makes the model more robust and suitable for our
problem. The proposed transfer learning approach allows us to
leverage the model’s ability to generalize unseen data, which is
essential for our task of dysarthric severity classification.
2.4. Transfer Learning

A machine learning approach called transfer learning uses in-
formation from a related activity to speed up learning for a new
task. Transfer learning happens when a model that has already
been trained is retrained using a different dataset while preserv-
ing the information learned from the original dataset by freezing
some trainable hyperparameters and neurons [12].

The training pipeline of our work is shown in Fig. 1. The
speech signal is preprocessed and made ready to be given as
input to the Whisper encoder block. Upon this, the input is pro-
cessed by two convolution layers of kernel width 3 [9]. In order
to help the Whisper encoder learn the relative positions within
the input speech signal, sinusoidal embeddings are applied to it
[11]. The processed signal is then directed to the Whisper en-
coder block, which depending upon the size of Whisper model,
gives a vector output of fixed dimensions in its last hidden state.
This output is then taken as an input by a CNN, which classifies
the speech signal into four classes of dysarthric-severity.

For training process, the weights of the Whisper encoder are
kept frozen, and only the weights of CNN classifier are updated
during back propagation. To further study the effect of deep
neural network architecture appended at the end of the pipeline,
we have performed similar experiments using a ResNet instead
of a CNN in Section 4 of this work.

3. Experimental Setup
3.1. Datasets Used

The Universal Access Dysarthric Speech (UA-Speech) corpus
is used in this study [13]. We have adopted our baseline from
[3]. The classifier models were trained on Whisper’s Encoder’s
output features by freezing the Encoder part of the pipeline,
from each speaker’s microphone arrays: M3, M5, and M6.
Apart from this, from a total of 765 utterances, 465 were used.
For training the model, 837, 837, 833, and 676 utterances be-
longing to each class, which constitutes 90% of the total data
were used. The remaining 10% of the data was used for the
evaluation of the trained model, which had 354 utterances. Ad-
ditionally, TORGO dataset was used [14], from which a to-
tal 1982 utterances belonging to three classes of severity-level
were taken. The same data distribution, i.e, 90% training data
and 10% testing data, was employed for TORGO dataset as
well.

Table 2: Class-wise patient details.

UA Corpus [13] TORGO [14]
Very Low F05, M08, M09, M10, M14 F04, M03

Low F04, M05, M11 F01, M05
Medium F02, M07, M16 M01, M04

High F03, M01, M04, M12 -
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Figure 1: Functional Block Diagram of Proposed Whisper Encoder Transfer Learning Pipeline in tandem with CNN classifier

3.2. Details of the Feature Sets Used

In this study, the performance of whisper encoder-based method
is compared with the state-of-the-art feature sets, such as MFCC
[15], and Linear Frequency Cepstral Coefficients (LFCC) [15].
The parametric details of these features are given in Table 3.
The widespread use of MFCC & LFCC in speech pathology
detection in literature makes them suitable for comparison with
the proposed method, hence they are taken as baseline feature
sets.

Table 3: Details of Parameters of the Various Feature Sets Used
Parameters Whisper MFCC LFCC

Frequency Scale - Mel Linear
Subband Filter - 40 40

Feature Dimension 1×1500×512 42 120

3.3. Convoluitonal Neural Network (CNN)

A Convolutional Neural Network (CNN) was employed as a
classifier, given its ability to replicate the way human brain per-
ceives images or visual features. The model consisted of four
convolutional layers and one fully-connected (FC) layer, with
respective convolution kernel sizes of 3 × 3, 3 × 3, 5 × 5, and
5 × 5. Rectified Linear activation units (ReLU) [16] was ap-
plied to the model, along with max-pool layers after each con-
volutional layer. Additionally, 2D spatial dropout layers with a
probability of 0.225 were included after each convolution layer
to avoid overfitting. Stochastic gradient descent optimizer was
used during the training of the CNN model [17]. The proposed
model was trained for 100 epochs, in which the loss was esti-
mated using a categorical cross-entropy function with a learning
rate of 0.01 for the first 20 epochs, which was later reduced to
0.003.
3.4. Residual Neural Network (ResNet)

ResNet is used as another DNN classifiers to make sure that
the encoder output is not biased against a given classifier. In
the present study, the ResNet50, a state-of-the-art convolutional
neural network (CNN) comprising 50 layers, was initially em-
ployed. However, due to the limited number of utterances in the
dataset, the issue of overfitting was encountered. To mitigate
this problem, we opted to downscale the model by reducing the
number of layers to four. Specifically, each layer was composed
of two standard ResNet blocks as opposed to the original archi-
tecture, which consisted of three, four, six, and three blocks, re-
spectively. The use of Stochastic Gradient Descent (SGD) was
made as an optimizer with the default learning rate of 0.003.
3.5. Performance Evaluation

For evaluating our model’s performance, we used some of the
widely accepted metrics like the F1-Score [18], Jaccard’s In-
dex, which measures the similarity and dissimilarity of two
classes [19], Mathew’s Correlation Coefficient (MCC), which

shows degree of association between the expected and the ac-
tual class [20], and Hamming Loss, which is calculated on the
basis of number of samples that are inaccurately predicted [21],
are used.

4. Experimental Results
This study involved conducting rigorous experiments to assess
the resilience of the proposed approach, by using two different
transfer learning architectures, one using CNN and the other
using ResNet, on both the datasets. Moreover, this study en-
tailed conducting experiments to evaluate the feasibility of im-
plementing our approach, which involved analyzing latency pe-
riods and performing precision retraining. Additionally, we
conducted a comparative analysis of the performance of our ap-
proach with that of MFCC and LFCC.
4.1. Effect of Size of Whisper Model

We have tested three whisper models, namely, tiny, base, and
small, the specifications of which are given in Table1, on both
the datasets using both the pipelines, one with CNN and the
other with ResNet. Fig. 2 indicates that the testing accuracy of
the data increases with an increase in the number of trainable
parameters as the size of the whisper model grows, with consis-
tent performance observed across both the classifiers. Notably,
the Whisper-Small Model yielded the highest accuracy, and was
thus selected for the remaining experiments presented in this pa-
per.

Figure 2: Performace Comparison between different Whisper
Models, a) UA Speech Corpus, b) Torgo Corpus

4.2. Effect of classifiers

In this study, we employed two distinct DNN classifiers,
namely, CNN [5] and ResNet [22], in order to address any po-
tential classifier model bias during performance evaluation. The
performance achieved by both the models was found to be al-
most identical, although ResNet exhibited a slightly better per-
formance due to its deeper architecture.
4.3. Comparison with existing feature sets

The classification accuracy on the baseline MFCC, LFCC, and
whisper-encoder method on CNN and ResNet are shown in the
Fig. 3. Clearly, it can be discerned that our proposed method of
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transfer learning outperforms the baseline MFCC and LFCC,
for both the datasets and for both the DNN classifiers. The
peak Testing accuracy achieved by the proposed methodology
is found to be 98.02% and 98.49% on CNN classifier, and,
97.46% and 98.99% on ResNet classifier, on UA Corpus and
TORGO dataset, respectively.

Figure 3: Comparison of Performance with Other Feature Sets,
a) UA Speech Corpus, and b) Torgo Corpus

Table 4 presents the confusion matrix computed for MFCC,
LFCC, and the proposed method utilizing the CNN pipeline.
The results indicate that the proposed method outperforms the
others, with the lowest per class error observed across all the
classes. Additionally, the proposed method performs better on
other widely accepted statistical parameters, such as, F1-Score,
Jaccard’s Index, MCC score and Hamming Loss when com-
pared to MFCC and LFCC, using UA Speech dataset, as can be
observed from Table 5.

Table 4: Confusion Matrix of Baseline MFCC, LFCC, and
Whisper(Small)

MFCC High Medium Low Very Low
High 70 2 2 1

Medium 1 88 3 1
Low 1 1 88 3

Very Low 1 1 0 91

LFCC High Medium Low Very Low
High 68 4 3 0

Medium 2 88 2 1
Low 0 2 91 0

Very Low 0 0 0 93

Whisper (Small) High Medium Low Very Low
High 72 2 1 0

Medium 1 91 1 0
Low 2 0 91 0

Very Low 0 0 0 93

Table 5: Performance Evaluation for Various Feature Sets

Feature Set Accuracy F1-Score MCC Jaccard
Index

Hamming
Loss

MFCC 95.20 0.91 0.88 0.84 0.087
LFCC 96.05 0.96 0.96 0.93 0.034

Whisper 98.02 0.98 0.96 0.97 0.019

4.4. Analysis of Precision for Retraining

We further conducted experiments using our pipeline of the
CNN model on the UA Speech corpus, to analyse the retraini-
bility of our proposed work. The experiments were repeated
five times for 100 epochs and in each of the runs, a maximum
accuracy of 98.02% was obtained. Moreover, it can be ob-
served from Fig. 4 that the performance eventually converges
to the same value with minor variations due to randomness in
the model and seed values.

4.5. Analysis of Latency Period

Fig. 5 shows that the proposed method performs significantly
better than LFCC and MFCC. Whisper encoder-based method
performs well even for speech signals of 100ms duration, mak-
ing it more suitable for practical implementation.

Figure 4: Precision for Retraining

Figure 5: Analysis of Latency Period

5. Summary and Conclusion
This study investigated significance of whisper encoder-based
features for classification of dysarthric severity-level. In conclu-
sion, the utilization of a pretrained encoder-decoder transformer
sequential model, which has been trained on a diverse range of
audio data characterized by varying environmental settings, mi-
crophones, languages, and configurations, exhibits a significant
improvement in the task of dysarthric severity-level classifica-
tion. The authors believe that such a model is robust to variabil-
ity, allowing it to extract meaningful features that are invariant
to the wide variation in dysarthric speech based on the sever-
ity of the condition, hence capturing difference between normal
and dysarthric speech with increasing levels of severity. Addi-
tionally, the model can learn to extract high-level features that
capture important aspects of the speech signal, such as pitch, in-
tonation, and spectral characteristics, which are found to be sig-
nificant for dysarthric severity-level classification. Due to the
small number of dysarthric patients, the proposed method’s ex-
tra computation cost is not substantial. Furthermore, the method
can be readily implemented as web API for medical use and
doesn’t require powerful computing hardware.

The Proposed transfer learning methodology is found to
perform relatively better for several evaluations factors, such
as comparison with state-of-the-art MFCC and LFCC features,
comparison of two pipelines (one with CNN and the other
with ResNet), latency period analysis, and analysis of precision
should the model be retrained. Due to limited resources we
were not able to evaluate performance for whisper medium and
large models. Our future work would be directed towards util-
ising the proposed pipeline with appropriate modifications for
dysarthric speech recognition and designing a numerical mea-
sure which would give more accurate diagnosis of the severity-
level, which is socially relevant assistive speech technology.
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