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Abstract
A hybrid vector representation for speech resonances is defined
using the modulation model and the sum of sinusoids model.
An adaptive filter bank, whose channels utilize resonance local-
ized modulation tracking, to robustly estimate temporal varia-
tions in these vectors, is then presented. The synchrony in mod-
ulations, within and across resonance channels, is subsequently
used to derive acoustic symbols and codes that map fundamen-
tal units of languages, phonemes. Such an acoustic-phonetic
mapping has never been demonstrated before. It has potential
applications in speech recognition and voice analytics.
Index Terms: acoustic symbols, acoustic codes, acoustic cues,
the speech code, phoneme mapping, symbolic representation

1. Introduction
Big-data systems that are currently used in applications like
speech recognition [1] lack human-like performance and effi-
ciency - their accuracy is susceptible to model mismatch [2, 3],
they fail to provide reliable feedback for error-correction [4, 1],
and they are very expensive to develop and deploy [1].

To address these problems, research on finding new acous-
tic cues in speech, which better map phonemes, has been under-
way for over a century [5, 6, 7, 8]. Many of these approaches are
motivated by the way humans recognize phonemes, followed by
syllables, words, sentences, and meaning [9].

Major strides have been made by Fant [6], Liberman [10],
Stevens [11], Allen [12], and others [13, 14]. Their speech anal-
ysis experiments primarily rely on acoustic features estimated
using the spectrogram [15], the linear prediction spectrum [16],
and auditory filter banks [17, 12].

Unfortunately, successful mapping of phonemes has not
been possible yet, due to a) high variability of existing speech
features across speakers, phoneme context, and noise [6, 14],
and b) limitations of time-frequency analysis tools [15] to
jointly model phoneme transitions and resonances [14].

This paper introduces three new concepts for acoustic-
phonetic mapping. The first, called modulation vector, is a
hybrid representation for speech resonances that combines fea-
tures from sinusoidal models [18, 19] and a generalized mod-
ulation model [20, 21, 22]. The second is an adaptive filter
bank that improves upon the Rao-Kumaresan algorithm [22];
which was modified by Mustafa and Bruce in [23]. Specifically,
it addresses problems in [22, 23] associated with complex-
valued signals, frequency tracking errors, and filter instability.
Additionally, it employs resonance localization to track mod-
ulation vectors in speech; instead of tracking formants as in
[24, 25, 26, 27, 23], or modulated components (envelope and
positive instantaneous frequency) as in [21, 22], or individual
frequency components as in [28, 29]. Finally, the third concept

utilizes synchrony in modulation vectors, within and across sub-
bands, for mapping phonemes to acoustic symbols and codes.

In the remaining sections, modulation vector is defined in
section 2, the adaptive filter bank is described in section 3,
phoneme mapping using synchrony is derived in section 4, and
simulation results are presented in section 5; discussions and
conclusion follow in sections 6 and 7 respectively.

2. Modulation Vector
In [21, 22], the k-th resonance in a speech signal, s[n], was
expressed using the product of elementary signals [20] as

sk[n] = acke
j2πfckneαk[n]+jα̂k[n]eβk[n]−jβ̂k[n] , (1)

where n is the time sample, ack is the carrier amplitude, and fck
is the carrier frequency. αk[n] and βk[n] are details in modula-
tions around fck; hat stands for Hilbert transform [30]. Using
Eqn.1, along with speech representations based on sum of sine
waves [18, 19], a modulation vector is now defined as

M̃k = (ak, fk, bk, ack, fck, bck, pk)
T , (2)

where ak, fk, and bk, denote amplitude, frequency, and band-
width parameters, which model sk[n]’s spectral envelope; bck is
the bandwidth around fck; and pk is sk[n]’s pitch. The relation-
ship between fk and fck may be understood from [21]; parame-
ters modeling αk[n] and βk[n] may be added using modulation
spectrum [31, 32] and sub-space [33] related concepts.

Next, the elements of M̃k are transformed, so that their
scales and regions of interest, match the ones used in auditory
systems [4, 12, 34], as follows: for i = k and ck, ai is converted
to decibel (dB) using 10 log10 ai; fi and bi are mapped to the
Mel scale using 2595 log10(1 + FHz/700) [4]; ai and bi are
capped at 200 dB and 400 Mel respectively; and pks outside the
pitch range of 80-300 Hz are excluded. These features finally
form the modulation vector, Mk.

3. Travellingwave Filter Bank (TFB)
The TFB algorithm estimates and tracks Mks, by drawing in-
spiration from the travellingwave on the basilar membrane in
the human ear’s cochlea [34, 35]. Its ability to separate indi-
vidual resonances, along with its hybrid representation, makes
TFB superior to the spectrogram, for speech analysis.

Each channel of TFB (Fig.1) consists of a Dynamic Track-
ing Filter (DTF), whose feed-back loop includes a first-order
Linear Prediction (LP) estimator [30] and a Non-linear Masker
(NM). The DTF is preceded by an All Zero Filter (AZF), and
coupled to a Modulation Feature Estimator (MFE). A non-linear
encoder (NE) finally outputs Mk as per section 2. The basic
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Figure 1: TFB’s resonance localized modulation tracking

idea behind TFB is that each channel’s AZF-DTF combination
tracks the localized resonance’s frequency, and the MFE esti-
mates (and implicitly tracks) the modulations characterizing its
associated sub-band.

3.1. Dynamic Tracking Filter

The DTF proposed is an advancement to the one in [22]. It is
an adaptive single-resonance filter with a transfer function

HDk(n, z) =
1− rp

1− rpej2πfk[n]z−1
, (3)

where k is the channel number; n is the sample number; and
rp is the pole-radius. fk[n] is estimated by LP (using its pole-
angle) based on the past L samples of DTF’s output. The im-
provements made are described next.

3.1.1. Estimation of ak[n], bk[n], and Constant-Q Option

ak[n] is set to be
√

σ2
lp, where σ2

lp is the LP error-variance, and

bk[n] ≈ −(ln rlp)fs/π [22], where rlp is the LP pole-radius;
fs is the sampling frequency. Further, L can be made smaller,
as k increases, to maintain a constant-Q [4] window. This will
enable rapid and finer analysis at higher frequencies.

3.1.2. Implementation for real-valued signals

The DTF is implemented using the difference function,

sk[n] = ck[n]sk[n− 1] + r2psk[n− 2] + gk[n]s̃k[n] , (4)

where s̃k[n] is the input to the DTF, sk[n] is the DTF’s out-
put, and ck[n]=2rpcos(2πfk[n]); the DTF’s gain at fk[n] is
set to unity by gk[n]=(1 − rp)

√
1 + r2p − 2rp cos(4πfk[n]).

It avoids computation of the analytic signal [15], thereby over-
coming Hilbert transform related problems [36].

3.1.3. Non-linear Masker

Figure 2: NM’s masking when frequencies get close

The LP outputs from all channels are analyzed by NM
(Fig.2) as follows: Get Masker (GM) sorts fk[n]s and gets the

strongest unmasked channel, ks. Then Get Thresholds (GTs)
compute δFL=fks [n]−fks−1[n] and δFU=fks+1[n]−fks [n]
for the lower and upper channels respectively. By comparing
δFL and δFU to a masking threshold, tm, masking indicators,
MiL and MiU , are computed next; set to be 0 (if δFL/U< tm)
or 1 (if δFL/U≥ tm). The Masking Filters (MFs) finally output

fks−1[n] = MiLfks−1[n] + (1−MiL)fks−1[n− 1] ,

fks+1[n] = MiUfks+1[n] + (1−MiU )fks+1[n− 1]. (5)

This process is repeated until there are no unmasked channels.
NM eliminates errors due to switching of frequency tracks.

Also, it weights the frequency estimates at n-1 and n, using
the estimated masking thresholds. This ensures stability of the
overall (TFB) filter bank, when the DTF frequencies come close
to each other. It is different from the one in [23] that sets a limit
to the maximum allowable frequency spacing between DTFs,
which results in tracking errors.

3.2. All Zero Filter

The transfer function for the k-th channel AZF is [22]

HAk(n, z) = Gk[n]

K−1∏

l=1
l ̸=k

(1− rze
j2πfl[n]z−1) , (6)

where rz is the radius of the AZF’s zero, fl[n] is the frequency
of its zero-location (obtained from other DTFs), and

Gk[n] =
1

K−1∏

l=1
l ̸=k

(1− rze
j2π(fl[n])−fk[n])

(7)

normalizes the k-th DTF’s gain. The improvements made to
AZF include stability (due to NM) and ability to handle real-
valued signals. The latter results from AZF’s design using a
cascade of K − 1 filters with the l-th cascade implemented as

s̃kl[n] =
skl[n]− c̃kl[n]skl[n− 1] + r2zskl[n− 2]

gkl[n]
, (8)

where skl[n] is the l-th cascade’s input (sk1[n]=s[n]), s̃kl[n]
is the output (s̃k[n] being the same as s̃kl[n] for l = K-1),
c̃kl[n] = 2rz cos(2πfl[n]), and the normalizing gain fac-
tor is gkl[n] =

√
1 + r2z − 2rz cos(2π(fl[n] + fk[n])) ×√

1 + r2z − 2rz cos(2π(fl[n]− fk[n])), with gkl[n] > 0.

3.3. Modulation Feature Estimator

The k-th MFE derives a non-distorted sub-band spectrum,
Skn[f ], by utilizing the spectrum, Sn[f ], of the past Lp sam-
ples of s[n] (computed only once ∀k, using the Fourier Trans-
form [4]), along with left and right frequency band-edges,

fkL[n] = arg min
f

SE
n [f ]

{
fk−1[n]<f<fk[n](∀k ̸=1)

0<f<f1[n]

}
and

fkR[n] = arg min
f

SE
n [f ]

{
fk[n]<f<fk+1[n](∀k ̸=K)

fK [n]<f<fs/2

}
(9)

respectively; where SE
n [f ] is Sn[f ]’s spectral envelope [4, 30].

Since fk[n] is being tracked, this results in an implicit tracking
of Skn[f ]. bck[n] is then set to be fkR[n]− fkL[n]. ack[n] and
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fck[n] are subsequently estimated as ack[n] = max |Skn[f ]|
and fck[n] = arg max

f
|Skn[f ]|.

Pitch, pk[n], is computed using s̃kM [n] (past Lp samples),
Skn[f ], and a hybrid of known techniques [4]. Using pk[n]s
and a full-band pitch estimate, pf [n], a sub-band pitch indica-
tor, Pk[n], is then defined as Pk[n]=1 if pk[n] = pf [n]; and
0 otherwise. As will be seen in section 4, the Pk[n]s yield
useful cues; not provided by existing methods that group non-
resonance sub-band pitches to yield one global pitch [37].

4. Modulation Synchrony
Based on several observations of Mk[n], using mixed lan-
guage, gender, and age speakers, it is clear that: the simulta-
neous evolution of Mk[n]’s elements (i.e. their synchrony),
within and across channels, trace symbols that map phonemes.
This “modulation synchrony” is now demonstrated using the
fricative consonant, SH, having the vowel IY as its context.

For ease of explanation, and since traces of fk and fck are
similar for IY-SH-IY, let us restrict Mk to (ak, fk, bk, pk)

T .
Also, instead of using Mk1[n], Mk2[n], etc., let us use ak, fk,
bk, and pk; that way a4[t2]-a1[t2] may be easily interpreted as
amplitude difference between channels 4 and 1 at time t2.

Figure 3: Ideal symbol for SH (with IY on left and right)

Fig.3 displays the acoustic symbol that has been observed
for IY-SH-IY. Let Rr=t2:t3 denote SH’s resonance region. The
details of cues in Fig.3 are then as follows.

For resonance: a4 exceeds a1 by at least 19 dB; the maxi-
mum range of all aks is at least 3 dB greater than the maximum
range of a2, a3, and a4; SH’s peak amplitude is greater than
those of its adjoining IYs; f2 and f1 are above 1500 and 250
Mel respectively; only b1 is above 125 Mel (b2, b3, b4 are be-
low 125 Mel); all Pks are absent for SH; and Rr’s duration is
between 30 and 500 msecs. And for transition: durations (t1:t2
and t3:t4) are between 10 and 100 msecs, and a4’s rise and
drops are greater than 5 dB. These (acoustic) cues may be ex-
pressed as

a4[v]− a1[v] ≥ t1a (v ∈ Rr) (10)

wa
1:4[v]÷ wa

2:4[v] ≥ t2a (v ∈ Rr , wa
2:4[v] ̸= 0) (11)

amax − a−
max ≥ t3a , amax − a+

max ≥ t3a (12)

f2[v] ≥ t1f , f1[v] ≥ t2f (v ∈ Rr) (13)

b1[v] ≥ t1b , bj [v] ≤ t1b (j = 2, 3, 4 ; v ∈ Rr) (14)

Pj [v] = 0 (∀j , v ∈ Rr) (15)

t1d ≤ (t3− t2) ≤ t2d (16)

t3d ≤ (t2− t1) ≤ t4d , t3d ≤ (t4− t3) ≤ t4d (17)

a4[t2]− a4[t1] ≥ t1s , a4[t3]− a4[t4] ≥ t1s ; (18)

where wa
i:j [v] represents the synchrony of ai to aj at v, using

max (ai[v], ai+1[v], ..., aj [v])-min (ai[v], ai+1[v], ..., aj [v]);
amax, and a−

max, and a+
max, are the maximum values of aks,

for SH, left IY, and right IY respectively; the thresholds tja,
tjf , tjb, tjd, and tjs (j=1,2,...) can be estimated using standard
statistical [30] or deep learning [38] techniques. Earlier studies
[14] that characterize SH by dominant high frequency energy,
relative amplitude, and noise duration, have reported only cues
that are similar to Eqns. 13, 12 , and 16 respectively.

The set of cues in Eqns. 10:18 form the acoustic code for
IY-SH-IY. Eqns. 10 and 11 that correspond to predominant fea-
tures of the symbol in Fig. 3, which are necessary to charac-
terize the phoneme, are called the main cues; and a4[v]-a1[v],
wa

1:4[v]÷wa
2:4[v] are called main cue-features.

5. Simulations

Figure 4: Spectrogram (Left) and MFB Outputs (Right)

Figure 5: aks (Left) and fks+b1 (Right)

Figure 6: All bks (Left) and Sub-band Harmonic Tracks (Right)

First, results of analyzing an utterance corresponding to IY-
SH-IY, spoken by a male speaker, using a Motorola Z2 Force
smart-phone, are presented. TFB parameters were rp=0.9,
rz=0.99, L=120, tm=250, and Lp=256; K=4 and fs=8 KHz.

For this example, the spectrogram (widely used for
acoustic-phonetic mapping [14]) is shown in Fig.4 Left, and
outputs of the Mel Filter Bank (MFB), which is the de facto
standard for speech recognition feature extraction [4, 1], is
shown in Fig. 4 Right. Apart from high frequency energy, found
in many phonemes, they fail to yield other cues, specific to SH.

Other problems associated with them include: a) peak-
picking the spectrogram or choosing the right MFB channels,
to track resonances, is not trivial [24, 25, 26, 27], b) any chosen
MFB filter’s center frequency, may not line up with the sig-
nal’s resonance, resulting in frequency estimation errors, and
c) MFB’s triangular weighted averaging could bias estimates of
cues based on energies - e.g., energy difference between the two
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“manually selected” channels (1 and 10), whose center frequen-
cies are close to 1st and 4th formant locations, is only ≈ 20 dB,
as opposed to the true value of ≈ 36 dB (computed manually).

In contrast, Fig.5 displays an entire set of cues that form
an acoustic symbol, similar to Fig.3. Specifically, Fig.5 (Left)
shows that at peak resonance (tR=540 msecs), a4-a1=36 dB;
and a2, a3, a4 are grouped together relative to their separation
from a1 (wa

1:4÷wa
2:4=18 dB). Further, amax>

(
a−
max, a

+
max

)
,

and a4’s transitions during rise (375:435 msecs) and drop
(645:720 msecs) are steep (23 dB and 19 dB respectively).
Fig.5 (Right) shows that in the resonance region, f2> 1500
Mel, f1> 250 Mel, and b1>100 Mel. Also, the values of f2,
f3, and f4 are similar to those of their adjoining IYs.

Fig.6 (Left) displays all bks for this example. Notice that
only b1 exhibits deviations during SH’s resonance. Further, ob-
serve that Fig.6 (Right) shows no harmonic lines (no pks) for
any of SH’s resonances, whereas IYs display mostly all Pks.

Clearly, the example considered maps to the acoustic code
of Eqns. 10:18, with thresholds: t1a=36, t2a=18, t3a=3, t1f=1500,
t2f=250, t1b=100, t1d=t2d=400, t3d=60, t4d=70, and t1s=19.

Figure 7: Robustness of main cue-features in noise

In Fig. 7, the average (µ) of main cue-features, sampled at
tR, as a function of signal-to-noise ratio (SNR = 10 log10

(
Ps
σ2

)
,

where Ps is the speech power with silence excluded, and σ2 is
the noise power) is plotted; error-bars indicate −σ. A compari-
son of µ − σ to thresholds, reveals that TFB is robust at SNRs
≥8 dB for white noise; at lower SNRs, at least one cue-feature’s
µ− σ falls below threshold, and the symbol looses its predom-
inant shape. For factory noise, due to its intermittent bursts, σ
is relatively higher and TFB is robust only for SNRs ≥15 dB.
Thus, TFB has potential to extract symbols even in noise.

Figure 8: aks (Left) and fks+b1 (Right) for rp = 0.1

The effect of increasing TFB’s DTF bandwidth is shown in
Fig. 8. A comparison of Fig. 8 and Fig. 5, shows that TFB is not
very sensitive to the choice of rp. However, at very low values,
aks and fks display relatively more fluctuations (due to energy
leakage from other sub-bands), and the symbol gets distorted.
On decreasing DTF bandwidths, TFB will fail to track fks and
not yield symbols; similar to fixed filter banks like MFB.

Finally, Table 1 lists the number of additions, multiplica-
tions, and total calculations, needed for TFB (with 4 channels)
and MFB (with 10 channels); only the filtering algorithms for
TFB and MFB are compared; for TFB, only DTF, NM, and AZF
(shown in Fig. 1) are considered; and for MFB, the computation

Table 1: Comparison of 4 channel TFB with 10 channel MFB

# Computations / sec TFB MFB
Additions 1139 29949
Multiplications 1273 29949
Total 2412 59898

of FFT, Mel cepstrum, delta cepstrum, and delta-delta cepstrum
[4], are ignored. As can be seen, MFB requires ≈ 25 times
more computations every second, compared to TFB. Results of
further analysis, more examples, and links to TFB source-code
and data-sets (to enable reproducibility), are in [39].

6. Discussions and Future Work
The acoustic symbols and codes derived for all English lan-
guage phonemes (documented in [39]) indicate that a) the lat-
ter may be mapped to unique context-dependent shapes (similar
to Fig. 3) and machine-readable rules (similar to Eqns. 10:18),
which the spectrogram and MFB fail to accomplish; and b) all
acoustic cues reported in earlier studies [14] correlate well, but
with only a sub-set of cues rendered by the symbols. How-
ever, experiments reveal that some of the code equations (e.g.
Eqns. 12:14 and 18, for IY-SH-IY) are not always satisfied for
speakers enunciating poorly [39]; reinforcing the challenge of
variability in speech. Interestingly, the code structure resembles
layers of linear transforms coupled with non-linearities, seen in
deep learning neural networks [40, 38]. For instance, Eqn. 10
is a linear combination of a4[v] and a1[v], followed by a non-
linearity (> t1a), where each ak is output of linear filters (con-
volutional AZF and recurrent DTF in Fig. 1) that is non-linearly
transformed (by NE in Fig. 1). These new insights may be used
to estimate code thresholds, in a way that the resulting codes en-
able speech recognition systems to require lesser training data,
and be more robust to training-testing model mismatch [2, 3].

Further, using the code equations, a confidence metric may
be defined as Cac=#Matching-Cues

#Total-Cues ×100. It may be extended to
word levels, and subsequently used for enabling speech under-
standing [41] and multi-modal [42] systems, to generate feed-
back, such as: display choices when 77%≤Cac<100%, prompt
“speak clearly” if 55%≤Cac<77%, and prompt ”please repeat”
for Cac<55%. Even further, the codes may be used to perform
advanced voice analytics [43]. For example, t1a=30 in Eqn. 10
indicates that SH was spoken loudly; t2a=5 in Eqn. 11 indicates
that SH was enunciated clearly; and t3a=0 in Eqn. 12 implies
that IY was louder than its following SH phoneme.

TFB’s design around just 4 channels, each using simple (1-
pole DTF and 3-zeros AZF) filters, makes it highly attractive
for low-cost hardware and software implementations. The fine-
tuning of its 5 parameters may be viewed as time-frequency
filtering [15] “matched” to the acoustic symbols of phonemes.

The time-alignments that form part of the acoustic symbols
(e.g., t1, t2, t3, t4, in Fig. 3), are currently being manually com-
puted. An algorithm to automatically estimate these is work in
progress. It will also facilitate more detailed acoustic-phonetic
analysis, across multiple languages, using a large data-set.

7. Conclusion
The synchrony in speech modulation vectors, estimated using
TFB’s resonance localized tracking, helps derive acoustic sym-
bols and codes that map phonemes. The codes have potential to
improve many aspects of current speech recognition systems.
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