
GPU-accelerated Guided Source Separation for Meeting Transcription

Desh Raj1, Daniel Povey2, Sanjeev Khudanpur1,3

1CLSP & 3HLTCOE, Johns Hopkins University, Baltimore, USA; 2Xiaomi Corp., Beijing, China
draj@cs.jhu.edu, dpovey@gmail.com, khudanpur@jhu.edu

Abstract
Guided source separation (GSS) is a target-speaker extraction
method that uses pre-computed speaker activities and blind source
separation to perform front-end enhancement of overlapped speech
signals. First proposed during the CHiME-5 challenge, it provided
significant improvements over the delay-and-sum beamforming
baseline. Despite its strengths, the method has seen limited
adoption for meeting transcription benchmarks primarily due to its
high computation time. In this paper, we describe our improved
implementation of GSS that leverages the power of modern
GPU-based pipelines, such as batched processing of frequencies
and segments, to provide 300x speed-up over CPU-based inference.
This allows us to perform detailed ablation studies over several
parameters of the GSS algorithm — context duration, number of
channels, and noise class, to name a few. We provide reproducible
pipelines for speaker-attributed transcription of popular meeting
benchmarks: LibriCSS, AMI, and AliMeeting. Our code is publicly
available at: https://github.com/desh2608/gss.
Index Terms: multi-talker ASR, GSS, speaker diarization.

1. Introduction
Automatic speech recognition (ASR) for meetings is characterized
by overlapping speech and far-field multi-channel audio [1].
Speaker overlaps, in particular, result in severe degradation in
transcription accuracy, both as a result of inaccurate detection of
overlapping segments [2, 3], as well as increased ASR errors on
these segments [4, 5, 6]. With the rise of deep neural networks
(NNs), there have been several advancements in using NN-based
mask estimation methods for speech separation [7, 8]. However,
these methods are often limited to fully overlapped synthetic speech,
and fail to generalize to real, sparse overlaps that are common in
multi-talker meetings [9, 10]. Recently, an alternate formulation
of speech separation methods, named continuous speech separation
(CSS), targeted specifically for sparse overlaps containing an
unknown number of speakers, has been proposed [11, 12].

Despite growing popularity of supervised methods, beamform-
ing of multi-channel signals using unsupervised mask estimation
remains a strong baseline for multi-talker ASR [13, 14, 15, 16].
Among these, the recently proposed guided source separation (GSS)
stands out as a particularly effective approach for handling noisy,
overlapping speech using diarization information [17, 18]. The
method was first proposed for the CHiME-5 challenge, where it pro-
vided relative word error rate (WER) improvement of 21.1% on the
multi-array track using oracle segmentation [17]. It was later adopted
as the challenge baseline for CHiME-6, and used by the winning
systems on both oracle and unsegmented tracks [19, 20, 21, 22].

GSS relies on fundamental ideas from blind source separation
(BSS), using spatial mixture models to model the sum of short-time
Fourier transform (STFT) bins of multiple speakers [23]. It uses
diarization information to (i) estimate the number of mixture com-
ponents, and (ii) avoid the speaker-frequency permutation problem
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Figure 1: Overview of batch processing for GPU-accelerated
GSS. Solid and dotted lines denote GPU-bound and CPU-bound
operations, respectively. The WPE module is not shown.
when processing different frequency bins independently. We will
describe the algorithm in detail in Section 2. However, despite its
strong performance in the CHiME-5 and CHiME-6 challenges, GSS
has seen limited adoption in other multi-talker benchmarks, most
notably offline meeting transcription, primarily due to its significant
computational cost. For instance, enhancing the CHiME-6 dev
set using 80 CPU jobs requires approximately 20 hours with the
original GSS implementation. There have been some efforts to
adapt the offline GSS algorithm for real-time enhancement by
relying on limited right context [24], but these are also CPU-bound.

In this paper, we describe our new, publicly-available
GPU-accelerated implementation of GSS that aims to remove this
computational bottleneck of enhancement. We achieve this primarily
by porting all the computations on the GPU, and applying batching
at several levels to maximize the GPU memory utilization. Our
implementation is inspired by modern deep learning pipelines where
background CPU-based workers perform data loading of large
tensors, while the data processing is performed by GPUs [25]. The
resulting 300x speedup allows us to perform ablation experiments
using several benchmarks to analyze the importance of factors such
as WPE, noise class, context duration, number of BSS iterations,
and number of channels, towards GSS performance.

Finally, we provide complete reproducible recipes for meeting
transcription of several benchmarks, namely LibriCSS, AMI, and
AliMeeting. This includes diarization with and without overlap
assignment, GSS-based enhancement, and pretrained models for
ASR inference with neural transducers. We believe that our results
will provide strong reproducible baselines for all future work on
speaker-attributed ASR.

2. Guided source separation
We first provide an overview of the GSS algorithm, as proposed
in [17]. Consider a multi-channel input recording provided in the
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Figure 2: Representative output of profiler during enhancement
of a single recording.
form of STFT features Yt,f ∈ CM , where t and f are time and
frequency bins, respectively, and M is the number of channels. The
GSS algorithm assumes the following model of the signal:

Yt,f =
∑

k∈K

Xearly
t,f,k

︸ ︷︷ ︸
X

early
t,f

+
∑

k∈K

Xtail
t,f,k

︸ ︷︷ ︸
Xtail

t,f

+Nt,f , (1)

where K is the number of speakers in the recording, and “early”
and “tail” refer to components of the reverberation. Nt,f is the
STFT component due to noise. For target-speaker extraction, the
objective is to estimate the de-reverberated signal from a desired
speaker k, i.e., X̂t,f,k. This estimation is performed in three steps,
as described below.

1. De-reverberation using WPE. First, we estimate Xtail
t,f , i.e., the

“tail” part of the reverb, using the popular weighted prediction error
(WPE) algorithm [26, 27], and remove it from the signal, followed
by normalization to get unit STFT vectors, i.e.,

Ỹt,f =
Yt,f−X̂tail

t,f

∥Yt,f−X̂tail
t,f ∥

. (2)

2. Mask estimation using CACGMMs. In the second stage,
STFT masks are estimated for each speaker (and noise). The mask
estimation technique is based on the “sparsity assumption,” which
assumes that only one speaker is active in each time-frequency
bin. Using this assumption, the vector in each T-F bin can be
assumed to have been generated from a mixture model where each
component of the mixture belongs to a different speaker (or noise
class). In the case of GSS, each mixture component is a complex
angular central Gaussian (CACG), and hence the mixture model is
a CACGMM [28]. A CACGMM models sums of unit-normalized
complex-valued random variables, and the probability density
function at a frequency index f is determined as

p(Ỹt,f)=
∑

k∈K

πf,kA(Ỹt,f ;Bf,k), (3)

where πf,k is the mixture weight of source k at frequency index f ,
and A(y;B) is a CACG distribution parameterized by B∈CM×M :

A(y;B)=

(
1

2π

)M
(M−1)!

|B| (yHB−1y)−M , (4)

where (·)H denotes the Hermitian transpose. Mixture model param-
eters are usually estimated using the EM algorithm that alternates be-
tween estimating the state posteriors (in the E-step) and the parame-
ters of the component model (in the M-step). However, there are two
problems in applying EM independently for each frequency bin: (i)
the number of sourcesK is unknown; and (ii) the same mixture com-
ponent may correspond to different sources in different frequency
bins. GSS solves both of these problems by assuming that speaker
activities are known for the recording, either through an oracle or a
diarization system. Given the speaker activities at,k∈{0,1}, we con-
vert the time-invariant mixture weights to time-varying weights as

πt,f,k=
πf,kat,k∑

k′∈Kπf,k′at,k′
(5)

There may still be a permutation problem between the mixture

components for the target speaker and the noise signal, since noise
is present throughout the recording. To solve this problem, the GSS
algorithm adds a “context window” to each utterance. We run the
EM algorithm on the CACGMM until convergence to obtain the
final state posteriors γt,f,k as the estimated speaker masks.
3. Mask-based MVDR beamforming. Finally, we compute the
spatial covariance matrices for the target and background signals as

Φk(f)=
1

T

∑

t

γt,f,kỸt,fỸ
H
t,f , (6)

Φbg(f)=
1

T

∑

t


∑

k′≠k

γt,f,k′


Ỹt,fỸ

H
t,f , (7)

which are then used to compute the minimum-variance distortionless
response (MVDR) filter [29, 30] as

hk(f)=
Φ−1

bg (f)Φk(f)eref

tr
(
Φ−1

bg (f)Φk(f)
) , (8)

where eref ∈{0,1}M is a one-hot vector indicating the reference
channel, selected to maximize the signal-to-noise ratio. Finally, the
enhanced STFT signal is computed as X̂t,f,k=hk(f)

HỸt,f .

3. GPU-accelerated inference
The original GSS implementation1 is slowed down by the following
key factors: (A) All computations (i.e., feature extraction, WPE,
mask estimation, beamforming, and iSTFT) are performed on the
CPU using NumPy [31]. (B) For each segment, the CACGMM-
based mask estimation is performed by iterating over all frequency
bins (usually 513) sequentially. (C) A context window (usually
15s) is used for all segments regardless of the segment duration,
resulting in a lot of wasted computation for short segments. (D) All
the segments are processed sequentially, so processing time for a
recording increases linearly with number of identified segments.
A workaround for limitation (D) was provided by using MPI-based
multi-processing (or Kaldi-style parallelization2) to enhance
segments concurrently on a multi-node CPU cluster. Nevertheless,
enhancing the CHiME-6 dev set, for instance, may require close
to 20 hours (wall clock time) even using 80 CPU jobs (§ 5.4).

We propose to accelerate GSS-based inference by leveraging
the power of modern GPU hardware and pipelines inspired from
neural network training. First, to address limitation (A), we
use CuPy arrays which speed up array operations significantly
using CUDA kernels, compared with regular NumPy-based
array operations [32]. Since the most computationally intensive
operations in the pipeline (such as CACG probability estimation)
involve matrix multiplications (through einsum), GPU-based
CUDA kernels are more efficient. However, simply transferring all
arrays to CuPy is not sufficient — for example, limitations (B)–(D)
still require sequential processing, which limits GPU utilization. To
maximize GPU utilization and improve real-time factor (RTF), we
perform the following additional optimizations.
1. Segment batching. Instead of processing each segment
independently, we batch together multiple segments for inference.
However, unlike neural network based training pipelines where
batching is performed by stacking sequences in parallel, our
batches are formed by concatenating segments sequentially along
the time (T ) axis to create “super-segments.” We choose this
form of batching because (i) the einsum-based operations are
designed to work with 3-D tensors, and (ii) parallel batching of
segments with padding would result in wasted memory. Since

1https://github.com/fgnt/pb_chime5
2https://kaldi-asr.org/doc/queue.html
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multiple components of the inference (such as mask estimation
and beamforming) compute statistics over the entire segment, we
always create super-segments of the same recording with the same
target speaker. Furthermore, we only use a single context window
for the entire batch (instead of segment-wise context), which further
reduces the wasted computations for short segments. This batching
technique should work well for the case when optimal reference
channels do not vary over the duration of the recording (i.e., when
speakers are stationary, which is common for meeting scenarios)3.
2. CPU-based data-loaders. We ensure that GPU idle time is
minimized by off-loading the batch creation process to CPU-based
data-loaders (possibly containing multiple workers), similar to deep
learning pipelines.
3. Frequency batching. To address limitation (B), we modified the
CACGMM-based mask estimation to process 3-D tensors (F,T,M)
instead of 2-D arrays (T,M). This simple change allows us to
process all the frequency bins concurrently in a batch, significantly
increasing GPU memory utilization.
4. Einsum path optimization. As mentioned above, several
components in the GSS pipeline are implemented using einsum,
and uses an optimal path contraction technique to find the path
of minimum floating-point operations through the sequence (often
resulting in up to 15x speed-up over a naive computation) [33]. How-
ever, the optimal path finding itself is computationally demanding,
with a complexity of O(N!) for N arrays, and since it is performed
several times during inference (for example, in each iteration of the
CACGMM inference), it overshadows any speed-ups from the actual
contracted sum. To remedy this, we cache the optimal computed
path in the first iteration and re-use it in subsequent iterations.4

Once the enhanced waveform is obtained for the super-segment,
we use background worker threads to chunk it into the original
segments and save the audios to disk. With all these speed-ups,
we were able to enhance a 10-minute LibriCSS recording in 159s
(as shown in Fig. 2). This is equivalent to a real-time factor (RTF)
of approximately 0.3. Further speed-ups can be obtained using
GPUs with larger memory, by using bigger batches. From an
implementation perspective, we can divide the pipeline into two
parts. The data processing part is tasked with efficiently creating
segments and corresponding speaker activities, while the inference
part performs the actual computations on GPU. We use Lhotse
for all data processing, i.e., to store and read recording metadata,
to represent speaker activities, and to perform segment batching
to create super-segments [34]. Since we use Lhotse’s supervision
manifests to store speaker activities, it allows us to use either oracle
segments, or read segments from RTTM files (diarization output)
with the same data processing pipeline (cf. § 5.1 and 5.2).

4. Experimental Setup
4.1. Data
We performed evaluations on three publicly-available meeting
datasets: LibriCSS, AMI, and AliMeeting. LibriCSS consists
of multi-channel audio recordings of 8-speaker “simulated
conversations” that were created by combining utterances from the
LibriSpeech test-clean set [35]. It comprises 10 one-hour long
sessions, each of which is made up of six 10-minute “mini sessions”
that have different overlap ratios (ranging from 0% to 40%). AMI
(Augmented Multi-party Interactions) consists of 100 hours of
recorded meetings containing 4 or 5 speakers per session [36].

3We also provide the option for using at most one segment per batch, for
the case when speakers are not stationary (§ 5.4).

4In practice, since our tensor dimensions often have the same relative order
across all batches (i.e., M<F<T ), we can simply fix the optimal path for
all einsum operations.

Table 1: Statistics of datasets used for evaluations. The k-speaker
durations are in terms of fraction of total speaking time.

LibriCSS AMI AliMeeting

Dev Test Train Dev Test Train Eval Test

Duration (h:m) 1:00 9:05 79:23 9:40 9:03 111:21 4:12 10:46
Num. sessions 6 54 133 18 16 209 8 20
Silence (%) 6.2 6.7 18.1 21.5 19.6 7.11 7.7 8.0
1-speaker (%) 81.3 81.2 75.5 74.3 73.0 52.5 62.1 63.4
2-speaker (%) 18.6 18.5 21.1 22.2 21.0 32.8 27.6 24.9
>2-speaker (%) 0.1 0.4 3.4 3.5 6.0 14.7 10.2 11.7

AliMeeting is a Mandarin-language corpus collected from real meet-
ings, originally designed for ICASSP 2022 M2MeT challenge [37].
Each session consists of a 15 to 30-minute discussion by 2-4
participants. Detailed statistics for all datasets are shown in Table 1.

We used three different mic settings for our experiments: IHM
(individual headset microphone), SDM (single distant microphone),
and GSS (GSS-enhanced multi-mic). Since LibriCSS does not
provide headset recordings, we used the corresponding LibriSpeech
utterances concatenated together to simulate IHM. For all datasets,
the first channel of the first array was used for the SDM setting. For
LibriCSS and AliMeeting, we used all available channels for GSS,
whereas for AMI, we used the first of the two arrays.

4.2. Models
We trained separate transducer-based ASR models for each
benchmark. For LibriCSS, we used a pretrained Conformer-
transducer [38] trained on LibriSpeech. For AMI and AliMeeting,
we trained a Zipformer [39] transducer on a combination of IHM,
IHM with simulated reverb, SDM, and GSS-enhanced far-field
recordings of the corresponding train set, and the resulting model
was used to evaluate all microphone settings. In all cases, we
applied three-fold speed perturbation and noise augmentation using
MUSAN [40] noises. We used a “stateless” decoder consisting of a
convolutional layer with a bi-gram context. The model was trained
using a pruned RNN-T loss [41] implemented in k25. For decoding,
we used a WFST-based parallel beam search method [42].

For the non-oracle segmentation experiments in § 5.2, we
used a multi-class spectral clustering based diarization system with
and without overlap assignment [43, 44]. The system consists of
a Pyannote-based speech activity detector [45] fine-tuned on the
corresponding train set for AMI and AliMeeting. For embedding ex-
traction, we used a pretrained ResNet101-based x-vector model [46].
For these experiments, we report diarization error rates (DER) and
concatenated minimum-permutation WER (cpWER) [19] in order
to analyze the impact of diarization errors on downstream ASR. We
did not use any collars to compute DERs for LibriCSS and AMI,
but a collar of 0.25 was used for AliMeeting following the original
work. All diarization recipes, generated RTTM files, and inference
pipelines for meeting transcription are publicly available6.

5. Results & Discussion
5.1. Far-field ASR
We first demonstrate the improvement in far-field ASR performance
when using GSS with oracle segmentation, as shown in Table 2.
The IHM and SDM settings may be considered as the lower and
upper bounds on WER (or CER), respectively. We found that across
all the datasets, GSS improved ASR performance significantly, with
the recovered error rates7 being 86.8%, 65.9%, and 80.4% for
LibriCSS, AMI, and AliMeeting, respectively. As expected, most

5https://github.com/k2-fsa/k2
6https://github.com/desh2608/icefall/tree/multi_talker
7(WSDM−WGSS)/(WSDM−WIHM)
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Table 2: Comparison of close-talk and far-field ASR performance.
The GSS setting uses 7 channels for LibriCSS and 8 channels for
AMI and AliMeeting. †LibriCSS IHM refers to the corresponding
LibriSpeech utterances. #For AliMeeting, the numbers are CER.

Dataset Setting Ins. Del. Sub. WER

LibriCSS
IHM† 0.3 0.2 1.7 2.2
SDM 1.1 3.1 6.6 10.8
GSS 0.3 0.9 2.1 3.3

AMI
IHM 2.2 4.5 11.3 18.0
SDM 4.0 9.6 18.5 32.1
GSS 2.4 6.1 14.3 22.8

AliMeeting#
IHM 1.0 3.8 7.3 12.1
SDM 2.0 10.0 14.4 26.4
GSS 1.1 4.9 9.0 15.0

Table 3: Effect of GSS-based enhancement on unsegmented speaker-
attributed ASR performance, measured by cpWER (%). ✗ and ✓ cor-
respond to the SDM and GSS settings from Table 2, respectively.

Diarizer DER GSS cpWER
FA MS Conf. Total Ins. Del. Sub. Total

Li
br

iC
SS





Spectral 1.2 10.4 3.4 14.9 ✗ 1.0 13.6 3.7 18.3
✓ 0.7 12.3 2.8 15.9

+ OVL 2.2 3.8 5.3 11.3 ✗ 2.6 8.1 6.4 17.1
✓ 1.6 7.1 3.4 12.1

A
M

I





Spectral 3.2 18.2 4.1 25.5 ✗ 2.6 20.3 15.5 38.5
✓ 2.6 18.0 13.0 33.6

+ OVL 7.4 9.6 6.7 23.7 ✗ 4.4 14.5 19.7 38.5
✓ 3.6 12.2 15.2 31.0

A
liM

ee
tin

g





Spectral 0.2 13.6 2.6 16.4 ✗ 1.2 26.4 10.1 37.6
✓ 0.9 24.3 7.2 32.4

+ OVL 2.8 6.0 5.6 14.4 ✗ 2.3 18.8 14.3 35.4
✓ 1.7 17.0 9.8 28.5

of the improvement was obtained from recovered deletion and
substitution errors, possibly from better recogntion of overlapped
speech segments.

5.2. Effect of diarization
For meeting transcription, it may be hard to obtain oracle segmenta-
tion, and often a diarization system is used as a pre-processing step
for ASR. In Table 3, we investigate the impact of using non-oracle
segmentation with GSS-based enhancement. We found that when
no enhancement is performed, overlap detection results in little
to no cpWER improvement, since the ASR system is unable to
handle overlapping segments. This finding corroborates the results
of the winning CHiME-6 system [22], which was able to substan-
tially improve ASR performance on unsegmented recordings using
TS-VAD based diarization [47]. Using GSS results in significant im-
provements, with relative cpWER (or cpCER) reductions of 29.1%,
19.5%, and 19.7% on LibriCSS, AMI, and AliMeeting, respectively.

5.3. Which factors are most important for GSS?
We performed ablation studies to investigate the effect of several
GSS parameters — WPE, noise class, context duration, number of
iterations for CACGMM inference, and number of input channels
— on the downstream ASR performance, as shown in Fig. 3. WPE
was found to be more important for LibriCSS, while using an
additional noise class was more important for AMI (Fig. 3(a)). This
may be because AMI contains occassional background noise, which
is absent in LibriCSS. Increasing the context duration from 5s to
15s resulted in consistent WER gains, but adding further context
degraded WER (Fig. 3(b)). We can attribute this to inclusion of the
target speaker segments in the context if it is expanded too far. A
similar observation was made earlier for CHiME-5 [48], where a
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Figure 3: Impact of several factors on ASR performance. In each
figure, the left and right y-axes denote WERs for LibriCSS (test)
and AMI (dev), respectively, with the axes scaled according to the
range of corresponding WER values.
Table 4: Compute time for our GSS implementation compared with
original on CHiME-6 dev set, using all available channels, 15s
context, and 20 BSS iterations. “Time” is the actual wall clock time
(in hours), while “cum. time” is the effective total time for all jobs.
Speedup is the ratio of the cumulative times.

GSS Compute Time Cum. time Speedup WER +RNNLM

Original 80 x Xeon 19.3 1542.6 1.0 44.7 43.5
Ours 4 x V100 1.3 5.3 292.2 44.2 43.1

15s context resulted in better WER compared to a 2s context [17].
For both datasets, increasing the number of BSS iterations

(for CACGMM inference) beyond 5 did not result in any WER
improvements (Fig. 3(c)). Finally, using more input channels
was found to be the single most important factor for better WER
performance. For example, using seven input channels resulted in
relative WER reduction of 50.4% and 21.8% on LibriCSS and AMI,
respectively, compared to using two channels. Nevertheless, this
improvement follows the law of diminishing returns, as evident by
the exponential decay in Fig. 3(d).

5.4. Analysis of speed-up
We compared our GSS implementation with the original GSS on
the CHiME-6 development set in terms of wall clock time and
ASR performance, as shown in Table 4. For ASR inference, we
used the publicly available Kaldi recipe and pretrained models
from JHU-CLSP’s submission to the CHiME-6 challenge [20].
We found that our implementation obtained an effective speed-up
of 292.2 without any degradation in WER. Since CHiME-6 has
non-stationary speakers, we disabled segment batching for this
experiment. We can obtain even further speed-ups by enabling this
for meeting-like data where speakers are stationary.

6. Conclusion
We described our GPU-accelerated implementation of GSS-based
enhancement for meeting transcription. On the CHiME-6
benchmark, it was found to be ∼300x faster than the original imple-
mentation, thus removing the computational bottleneck associated
with this technique. Through experiments conducted on LibriCSS,
AMI, and AliMeeting, we showed that GSS can recover up to 80%
of the WER difference between close-talk and far-field settings.
Ablation studies demonstrated that the number of input channels
is the single most important factor determining GSS performance.
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