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Abstract
Accent conversion (AC) seeks to transform utterances from a
non-native speaker to appear native-like. Compared to voice
conversion, which generally treats accent and voice quality as
one, AC provides a finer-grained decomposition of speech. This
paper presents an AC system that further decomposes an accent
into its segmental and prosodic characteristics, and provides
independent control of both channels. The system uses con-
ventional modules (acoustic model, speaker/prosody encoders,
seq2seq model) to generate accent conversions that combine (1)
the segmental characteristics from a source utterance, (2) the
voice characteristics from a target utterance, and (3) the prosody
of a reference utterance. However, naive application of this idea
prevents the system from learning and transferring prosody. We
show that vector quantization and removal of repeated code-
words allows the system to transfer prosody and improve voice
similarity, as verified by objective and perceptual measures.
Index Terms: accent conversion, voice conversion, prosody
modeling, vector quantization, non-native speech

1. Introduction
Older learners of a second language (L2) often speak with a so-
called “foreign accent.” While many other aspects of communi-
cating in an L2 can be acquired well into adulthood (e.g., vocab-
ulary, grammar, writing), achieving native-like pronunciation is
difficult past a critical period because of the neuro-musculatory
basis of speech production [1]. While a native accent is not
required to be intelligible, improving pronunciation can reduce
listening effort [2] as well as negative social evaluations [3].

To improve pronunciation, several studies have suggested
that L2 learners would benefit from imitating a model voice
that is close to their own voice [4], if not their own voice trans-
formed to sound native-like [5]. In fact, several techniques have
been proposed for this purpose, borrowing models from the
voice conversion and speech synthesis literature [6]. These “ac-
cent conversion” techniques provide a finer-grained separation
of speaker characteristics than voice conversion [7], since they
treat accent and voice quality as independent factors to be disen-
tangled. However, accent conversion techniques do not attempt
to disentangle the two main sources of non-native accent: seg-
mental and prosodic characteristics. Being able to manipulate
an L2 speaker’s segmental and/or prosodic characteristics in-
dependently is critical to quantify how these two channels con-
tribute to speech comprehensibility and social attitudes. This in-
formation would further be used to improve self-imitation tools
in computer assisted pronunciation training.

As a first step to address this issue, we present a model
that allows an utterance U1 from any source speaker to be re-
synthesized to match the voice quality in any target utterance

U2 (as in voice cloning [8]) and the prosody from a reference
utterance U3 (as in expressive text-to-speech synthesis [9]).
Our model passes U1 through an acoustic model to generate
a speaker-independent phonetic posteriorgram (PPG), and then
to a sequence-to-sequence (seq2seq) model that combines the
PPG with a speaker embedding from U2 and a prosody embed-
ding from U3. However, naı̈ve application of this strategy leads
the seq2seq model to preserve the prosodic content in U1, which
is readily available in the PPG (e.g., duration), instead of those
in U2, which are heavily encoded.

Key contributions. To solve this problem, we propose a
technique that reduces prosodic information in the PPG, bring-
ing it close to the information available in a phonetic transcrip-
tion. Namely, we apply vector quantization to the PPGs, and
then remove consecutive duplicates in the resulting VQ-PPG.
This simple trick forces the seq2seq model to use the prosodic
embedding to reconstruct the speech signal and, additionally,
makes the converted speech significantly closer to that of the
target speaker. We evaluate the approach using objective and
subjective measures of acoustic quality, speaker transfer and
prosody transfer, and compare it against a baseline system that
does not use vector quantization. Our results show that the pro-
posed system achieves significantly better transfer of prosody
characteristics and, as a side benefit, improved transfer of voice
characteristics.

2. Related work
2.1. Prosody modeling for speech synthesis
Research on prosody modeling for speech synthesis can be
broadly divided into two categories: text-to-speech (TTS) and
voice conversion (VC). In TTS, Skerry-Ryan et al. [9] de-
veloped a Tacotron-based speech synthesizer with an encoder
module that separates prosody information from the original
speech. They showed that conditioning the synthesizer on this
learnt embedding can be used to synthesize audio that matches
the prosody of the reference signal. Wang et al. [10] trained
“global style tokens”, a bank of embeddings with a Tacotron-
based seq2seq model without any explicit labels. The model is
trained in a self-supervised manner and the learnt embeddings
can be used to alter the speed of the speech signal, control, and
transfer the speaking style, independently from the text content.

To control prosody in VC, AutoVC [11] uses an auto-
encoder based network with an information bottleneck to disen-
tangle speaker information form linguistic content while recon-
structing the original speech. SpeechFlow [12] extended Au-
toVC by using three encoder channels with different informa-
tion bottleneck designs and adding randomly sampled noise to
disentangle content, pitch, rhythm, and speaker identity. How-
ever, bottlenecks need to be carefully designed to effectively
separate the three prosodic features.
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2.2. Vector quantization

Vector quantization (VQ) reduces the speech signal into a num-
ber of discrete clusters. Baevski [13] used VQ to learn discrete
representations of audio segments and predict future speech
segments as in wav2vec [14]. They showed that pre-training a
BERT model with the learnt representations improved phoneme
classification on the TIMIT dataset and speech recognition per-
formance on the WSJ dataset. In the context of VC, Wu et al.
[15] used VQ to develop VQVC and disentangled speaker and
content representations and trained the model to reconstruct the
speech signal. VQVC+ [16] improved VC performance using a
U-net architecture and an auto-encoder based system to gener-
ate audio of high quality. However, the content and speaker rep-
resentations in these systems may still be entangled. To avoid
this, Wang et al. [17] proposed VQMI, a model that combined
VQ with mutual information to decorrelate the individual rep-
resentations as much as possible. Their model only retained lin-
guistic and intonation variations from the source speaker while
capturing target speaker characteristics, and achieved state-of-
the-art performance for one-shot VC.

3. Methods
The proposed model is illustrated in Figure 1. An acoustic
model (AM) converts an input utterance (U1) into a bottleneck
feature (BNF) matrix that captures the phonetic content of the
utterance. The BNF matrix is then passed to (1) a vector quan-
tization (VQ) module that discretizes each column (i.e., frame)
into one of N codewords (i.e., cluster centers), and then (2) a
duplicate removal (DR) stage that eliminates consecutive dupli-
cates of each codeword. The resulting short sequence code-
words can be viewed as a sequence of phonemic codes (for
N=39) or sub-phonetic codes (for larger N). Thus, it is akin to
a phonemic transcription, except phonemes are not represented
by symbols but by their corresponding BNFs.

A seq2seq model consumes (i) a short sequence of code-
words from utterance U1, (ii) a speaker embedding represent-
ing the voice quality in utterance U2 from a target speaker, and
(iii) a prosody embedding from a reference utterance U3. From
these three information bottlenecks, the seq2seq attempts to re-
construct the original Mel spectrogram. The prosody encoder
and seq2seq model are trained simultaneously in an unsuper-
vised fashion (i.e., as an auto-encoder) while the speaker en-
coder and acoustic model are pre-trained in advance. During
training, the acoustic model and prosody encoder are fed the
same utterance from the same speaker, whereas the speaker em-
bedding is fed a different utterance U2 from the same speaker.
This trick ensures the prosody encoder learns a different map-
ping than the speaker encoder, and the seq2seq model does not
attempt to infer prosody from the speaker embedding.

3.1. Acoustic Model

The acoustic model generates a phonetic posteriorgram (PPGs)
containing the posterior probability that each speech frame be-
longs to a predefined set of phonetic units (phonemes or tri-
phones/senones). The model is a TDNN-F network with 5
hidden layers and ReLU activation, with 256 neurons in the
last hidden layer [18]. Following [19], we train the TDNN-
F on the Librispeech corpus [20]. Following [21], we use the
256-dim output of the last hidden layer as bottleneck features
(BNF). Compared to the PPG generated in the final softmax
layer, BNFs have much lower dimensionality (256 vs 6024 for
senone-PPGs), which makes training the seq2seq easier.
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Figure 1: Block diagram of the proposed system. The prosody
encoder and seq2seq model are trained jointly as an auto-
encoder. For accent conversion, segmentals come from U1
and prosody from U3, thus providing independent control of
both channels.

3.2. Vector Quantization and Duplicate Removal
Though the BNF matrix captures primarily segmental informa-
tion in U1, it also preserves significant prosodic characteristics
(e.g., phone duration, speaking rate). As such, if the BNF ma-
trix is used as an input, the seq2seq model must learn to ignore
its prosody content (which is that of U1) and instead focus on
the prosody embedding from utterance U3. However, prosody
in U1 is trivially available (i.e., the number of columns in the
BNF matrix equals the duration), whereas prosody in U3 is en-
coded into a compact vector. As such, the seq2seq generally
converges to a local minimum that ignores the prosody encod-
ing and instead preserves the prosody in the BNF matrix.

To avoid this local minimum, we propose to remove
prosodic content in the BNF matrix using vector quantization
(VQ). Namely, we pre-train a k-means clustering model to learn
a set of codewords (i.e., cluster centers) from the L2-ARCTIC
corpus [22] (20 speakers, 1000 utterances each). Once the code-
book has been learned, we replace each column in the BNF
matrix with its corresponding codeword, and finally eliminate
any duplicate codewords that are adjacent in the sequence, as
depicted in Figure 1. In this fashion, timing information is re-
moved from the BNF matrix, which is reduced to a short se-
quence of codewords that only preserves key segmental infor-
mation in U1.

Key insight. When we use this short codebook sequence
to jointly train the prosody encoder and the seq2seq model, the
two modules are forced to learn complementary tasks. First, the
prosody encoder is forced to learn to generate an embedding
that summarizes the prosody in U3. Second, the seq2seq model
is forced to learn to combine the prosody embedding with the
short codebook sequence to reconstruct the original Mel spec-
trogram.

Though not our main focus, a second major advantage of
vector quantizing BNFs is that it can lead to significant im-
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provements in voice conversion performance, as shown in prior
studies [15, 16]. It is important to note that this secondary ben-
efit is due to the VQ step alone, not the subsequent DR step.

3.3. Sequence-to-Sequence Model
Our seq2seq model is derived from the Voice Transformer Net-
work [23] which is a combination of Transformer [24] and
Tacotron2 [25]. As suggested in [26], the Transformer architec-
ture is adapted to the VC task by adding pre-nets to the decoder.
An extra linear layer was added to predict the stop token, along
with a weighted binary cross-entropy loss to train the model
to learn when to stop decoding. Similar to recent TTS models
[25, 27], a five-layer CNN postnet was used to predict a residual
to refine the final prediction.

The seq2seq model takes in a BNF matrix and outputs a
converted log-mel spectrogram. The high time resolution of
both the input and output acoustic features in VC makes atten-
tion learning difficult and increases the training memory foot-
print. While training our baseline model, we use a reduction
factor re and rd on both encoder and decoder side respectively
so that it can stack multiple frames to reduce the time axis. This
not only improves attention alignment but also reduces the train-
ing memory footprint by half and the number of required gradi-
ent accumulation steps [26]. When using duplicate removal, the
time resolution of the input vector quantized BNFs are compa-
rable to text inputs in TTS systems, and much lower than those
of original acoustic features. So, in the latter case, we employ
the reduction factor rd only on the decoder side.

4. Experimental setup
We conducted our experiments using the ARCTIC [28] and
L2-ARCTIC [22] corpora. The combined dataset consists of
28 speakers (1,132 utterance each), out of which four speak-
ers (NJS, YKWK, TXHC and ZHAA) were excluded from the
training set so they could be used as unseen speakers during test-
ing. We use speaker BDL from ARCTIC as the reference L1
speaker for all experiments. For each utterance, we extracted
80-dim Mel-spectrograms with 25ms window and 10ms shift.
The seq2seq model consisted of 4 encoding layers and 4 de-
coding layers, and both had reduction factors re and rd of 2.
We set the batch size to 16, and used the Lamb optimizer with
a learning rate of 10−3 annealed down to 10−5 by exponen-
tial scheduling. To convert Mel-spectrograms to waveforms, we
used a pre-trained HiFiGAN vocoder [29]. All our models were
trained using two NVIDIA Tesla V100 GPUs.

5. Results
We evaluated the proposed model on a series of objective and
subjective measures of synthesis quality, speaker transfer, and
prosody transfer using the four speakers in L2-ARCTIC [22]
that were held out when training the prosody embedding and
seq2seq model.

5.1. Synthesis quality
We evaluated synthesis quality using objective and subjective
measures. As an objective measure, we examined how the size
of the codebook impacted Mel Cepstral Distortion (MCD). For
this purpose, we used the system as an auto-encoder: to recon-
struct at the output the same utterance fed to the acoustic model,
prosody encoder and speaker encoding (i.e., U1=U2=U3). Re-
sults are shown in Figure 2 for different codebook sizes; no-VQ
is equivalent to having an infinite number of codewords (vq∞).
As shown, MCD decreases significantly as the codebook size
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Figure 2: Mel Cepstral Distortion (MCD) vs. codebook size.

Table 1: MOS for baseline (vq∞) and proposed (vq128)

Target Baseline Proposed p value

MOS 4.32 ± 0.82 3.89 ± 0.83 3.69 ± 0.79 ≪ 0.001

increases up to 128 codewords, after which the MCD stabi-
lizes. One-way ANOVA shows that the effect of codebook size
is statistically significant F (7, 16) = 14.23, p ≪ 0.001. Fur-
ther, paired t-test shows a significant difference between vq128
and vq64 (p = 0.007, one-tailed), and between vq128 and
vq∞ (p = 0.005, one-tailed). Thus, while the lowest MCD is
achieved when VQ is not used (vq∞), the lowest MCD among
all the VQ models is for 128 codewords. As such, all subse-
quent models in this study are based on vq128.

To verify these results perceptually, we conducted a listen-
ing test on Amazon Mechanical Turk (AMT), where listeners
(N=20) were asked to rate the acoustic quality of utterances us-
ing a standard 5-point scale mean opinion score (MOS) as fol-
lows [rating, speech quality, level of distortion]: [5, excellent,
imperceptible] — [4, good, just perceptible but not annoying]
— [3, fair, perceptible but slightly annoying] — [2, poor, an-
noying but not objectionable ] — [1, bad, very annoying and ob-
jectionable]. Each listener rated 20 utterances from the vq128
model (proposed) and the vq∞ model (which served as a base-
line), as well as original L2 utterances. Results are shown in Ta-
ble 1. As expected, L2 utterances received the highest MOS rat-
ings (4.32). Speech quality dropped by 0.43 MOS points (p≪
0.001) for the baseline system, and an additional 0.20 points
(p≪ 0.001) for the proposed system. While this result was also
expected (and consistent with the objective results in Figure 2),
it is noteworthy that discretizing the speech spectrum down to
128 codewords achieves nearly the same synthesis quality as
using the full range of spectral variability in the speech corpus.

5.2. Speaker identity transfer
As we had done for synthesis quality, we used objective and
subjective measures to evaluate speaker transfer in models vq∞
(baseline) and vq128. As an objective measure, we visualized
the embeddings produced by the speaker encoder for the source
speaker (BDL), three target speakers (NJS, TXHC, ZHAA), and
voice conversions from both systems, 10 utterances per voice.
Results are shown in Figure 3. In this t-SNE plot, speaker trans-
fer is inversely proportional to the distance from each voice con-
version (vq∞, vq128) to the corresponding target speaker. As
shown, voice conversions from vq128 are significantly closer to
their target than those from vq∞, indicating that vector quantiz-
ing improves transfer from source to target speaker when com-
pared to not using vector quantization.

To corroborate these results, we conducted an ABX listen-
ing test on AMT, where participants were presented with two
audio samples, one from vq∞ and one from vq128 (in a coun-
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Figure 3: t-SNE of speaker embeddings for source (black), tar-
get (blue), vq∞ (red) and vq128 (green). The arrows represent
a path connecting source and target utterances, passing through
conversions from the two systems. Conversions from vq128 are
much closer to the target than those from vq∞, indicating that
the vq128 system provides better transfer of speaker identity.

Table 2: Perceptual ratings of speaker transfer in an ABX test

Rating Baseline (vq∞) Proposed (vq128)

Closest to the L2 speaker 29.75% 70.25%
Average rater confidence 1.22 5.12

terbalanced fashion), followed by the original L2 utterance.
Then, participants had to decide which audio sample (vq∞ or
vq128) was more similar to the L2 utterance, and rate the con-
fidence in their decision using a 7-point scale (7: extremely
confident; 5: quite a bit confident; 3: somewhat confident; 1:
not confident at all). Following [30], the decision and confi-
dence level were then collapsed to form a 14-point VSS (Voice
Similarity Score) scale: -7 (definitely vq∞) to +7 (definitely
vq128). Each listener rated 10 ABX triplets per L2 speaker and
system. As shown in Table 2, vq128 outputs were chosen as
the closest to the L2 speaker 70.25% of the times, and with a
high confidence level (5.12: quite a bit confident it is vq128),
whereas the baseline (vq∞) was selected only 29.75% of the
times, and with a low confidence level (1:22: not confident at
all it is vq∞.) This result further corroborates the qualitative
results in the t-SNE plot in Figure 3.

5.3. Prosody transfer

In the final set of tests, we examined how well the vq∞ (base-
line) and vq128 (proposed) models were able to transfer the
prosodic characteristics of utterance U3. For this purpose, ut-
terance U1 was from an L1 speaker, whereas utterances U2=U3
were from an L2 speaker. As such, the system was expected to
generate an utterance with L1 segmentals and L2 prosody.

In a first experiment, we measured differences in duration,
average F0 and F0 range between conversions from both sys-
tems and utterances U1/L1 (i.e., whose prosody should be ig-
nored) and U2/L2 (i.e., whose prosody should be transferred).
If prosody transfer was successful, we would hypothesize that
the duration, F0 average and F0 range for the voice conversions
would be closer to those of the L2 utterance than to those in

Table 3: Differences in prosodic characteristics between origi-
nal utterances (L1, L2) and accent conversions (vq∞, vq128)

∆ duration
(ms)

∆ F0 avg
(Hz)

∆ F0 range
(Hz)

L1 L2 L1 L2 L1 L2
vq∞ 16.89 413.37 36.83 40.43 48.53 35.93
vq128 395.42 5.89 82.36 7.96 20.07 11.42

Table 4: Perceptual ratings of prosody transfer in an ABX test

Rating Baseline (vq∞) Proposed (vq128)

Closest to the L2 speaker 31.12% 68.88%
Average rater confidence 1.31 3.2

the L1 utterance. Results in Table 3 confirm this hypothesis
for the vq128 system, but the reverse hypothesis for the vq∞
(baseline) system. Namely, the three measures of prosody for
vq∞ syntheses are closer to the L1 utterance (a negative result),
whereas for the vq128 system the three measures are closer to
the L2 utterance (a positive result). These results indicate that
only the vq128 system is able to transfer the prosody character-
istics present in the prosody embedding.

To corroborate these findings, we conducted a second ABX
test on AMT, where participants listened to audio samples from
both systems (vq∞ or vq128) in a counterbalanced fashion, fol-
lowed by the original L2 utterance. As before, participants had
to decide which audio sample (vq∞ or vq128) was more sim-
ilar to the L2 utterance, and then rate their confidence. Results
are shown in Table 4. Listeners rated utterances from the pro-
posed system (vq128) as the closest to the original L2 utterance
69% of the times with somewhat confidence (3.2), whereas the
vq∞ was selected the remaining 31.12% of the times with no
confidence at all (1.2). This result is remarkable considering
that listeners had to ignore differences in segmental content be-
tween the two accent conversions (L1 segmentals) and the L2
utterances (L2 segmentals), and instead focus on prosody.

6. Discussion
Conventional methods for accent conversion allow an L2 ut-
terance to be resynthesized with both the segmental and the
prosodic characteristics of native speech, but not one or the
other. To address this limitation, we have proposed a model 1

that provides independent control of both channels. The trick
is to discretize speech (subsampling in time, vector quantiz-
ing phonetic content) down to a handful of codewords, so that
a seq2seq synthesizer learns to reconstruct speech using the
prosody of a reference utterance. Through a series of objec-
tive and subjective experiments, we have shown that the dis-
cretization step in the time domain (duplicate removal) is key
to achieve prosody transfer. Additionally, we show that vector
quantizing the speech corpus leads to significantly better trans-
fer of speaker identity.

The ability to control segmental and prosody characteristics
independently enables future studies to quantify their relative
effect in comprehensibility and social evaluations of non-native
speech. Findings from these future studies could then be used
to develop targeted interventions in pronunciation training.
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