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Abstract
This work unveils the enigmatic link between phonemes

and facial features. Traditional studies on voice-face correla-
tions typically involve using a long period of voice input, in-
cluding generating face images from voices and reconstructing
3D face meshes from voices. However, in situations like voice-
based crimes, the available voice evidence may be short and
limited. Additionally, from a physiological perspective, each
segment of speech - phoneme corresponds to different types of
airflow and movements in the face. Therefore, it is advanta-
geous to discover the hidden link between phonemes and face
attributes. In this paper, we propose an analysis pipeline to help
us explore the voice-face relationship in a fine-grained manner,
i.e., phonemes vs. facial anthropometric measurements (AM).
We build an estimator for each phoneme-AM pair and evaluate
the correlation through hypothesis testing. Our results indicate
that AMs are more predictable from vowels compared to conso-
nants, particularly with plosives. Additionally, we observe that
if a specific AM exhibits more movement during phoneme pro-
nunciation, it is more predictable. Our findings support those
in physiology regarding correlation and lay the groundwork for
future research on speech-face multimodal learning.
Index Terms: voice-face correlation, phoneme

1. Introduction
The implicit relation between speech and anthropometry fea-
tures has been extensively researched in recent years. Nu-
merous voice profiling studies [1, 2, 3, 4, 5, 6] have shown
that human voice carries a plethora of information about the
speaker, making it possible to deduce biophysical characteris-
tics of speakers, e.g., gender, age and health conditions, from
their voice. However, in criminal profiling scenarios, the study
of correlations between voice and face becomes essential. In
voice-based crimes, such as hoax emergency calls and voice-
based phishing, the officers seek to depict the facial features
of the criminal merely from short voice evidence. “Mayday”
can be an example of the audio samples obtained by officers.
This motivates us to investigate the phoneme-level correlation
between voice and face.

Several recent works have attempted to investigate the cor-
relation between voice and face. Cognitive science studies [7, 8]
suggests human has a strong capability to imagine the appear-
ance of speakers based on their voice. To verify it, face re-
construction from voice, which aims to recover identity-fidelity
faces from their corresponding voice recordings, is introduced
by [9]. After that, great progresses [10, 11] has been achieved

∗ Equal contribution.

by using advanced Generative Adversarial Networks [12]. Go-
ing beyond, recent works [13, 14] attempt to recover 3D face
geometry meshes from voice to avoid the impact of inevitable
background area modeling in 2D images. However, all these
approaches rely on a long period of voice and potentially ne-
glect the advantage of exploring a more fine-grained voice-face
correspondence.

Rethinking the human voice production mechanism, the
voice is produced by either the vibration of the vocal cord or
the resonance of the pulmonary airflow. For both of the mecha-
nisms, the vocal track is highly enrolled. The vocal track can be
assumed as a filter, reflecting the characteristics of human voice.
With the tight bind of muscle and bone, the vocal track is also
correlated with facial attributes. Specifically, each phoneme
corresponds to a different vocal track status and also an accord-
ingly facial movement. To construct an accurate voice-face cor-
relation, we argue that phoneme-level voice-face modeling is
vital.

To investigate and understand the voice-face correlation
at a more fine-grained phoneme level, we propose an anal-
ysis pipeline that leverages a common feature extractor with
a regression head to predict human anthropometric measure-
ments (AM) from phoneme. Specifically, Human anthropomet-
ric measurements are a set of facial measurements summarized
from cognitive science studies that can effectively represent the
identity of a human. We decompose the audio recordings into
phonemes and learn to predict AMs from phonemes. In this
way, we can quantitatively analyze the relationship between
each facial AM and phoneme pairs. In this paper, we aim to
answer core two questions: 1) whether there exists any “enig-
matic” link between phoneme and facial features and 2) whether
those “enigmatic” links can be quantitatively described.

2. Related Works
Learning Human Attributes from Voice. There is a substan-
tial body of research on inferring human attributes from a per-
son’s voice, including speaker identity [15, 16], age [1, 3], gen-
der [4], and emotion status [17, 6]. In addition to predicting
attributes directly related to voice, many studies have explored
the implicit correlation between voice and facial features. One
popular task is generating 2D face images from voice using
GANs [12], which has been progressed in several recent works
[10, 9, 11]. To avoid the impact of inevitable background area
modeling in 2D images, recent work turns to the 3D domain:
synthesizing 3D meshes from voices [13].
Phoneme Pronunciation Mechanism. The human vocal tract
can be considered as a series of resonance chambers that can
be dynamically configured [18]. When the vocal cords vibrate,
they convert the airflow from the lungs into acoustic energy in
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Figure 1: Illustration of our framework. We convert phoneme clips into mel spectrograms and develop estimators for each phoneme-
acoustic model (AM) pair. Hypothesis testing is used to determine the predictability of AMs from phonemes. Green denotes predictable
AMs and red otherwise, where the color shade indicates the degree of predictability.

the form of sound waves, producing voice. The shape and di-
mensions of the resonant chambers change as the movements
of the vocal tract modify the acoustic signal, resulting in differ-
ent patterns [19, 20]. To produce a specific pattern, the mouth
and nose must form a corresponding shape. Each pattern corre-
sponds to a unique compositional unit of speech, or a phoneme.
When a speaker enunciates different phonemes, the vocal tract,
mouse, nose, and other related facial structures act in concert.
And each phoneme, therefore, carries some information about
all these related features.

3. Methods

3.1. Overview

We aim to investigate the correlations between each phoneme
and AM pair. As shown in Fig 1, we first transform the seg-
mented phonemes into log mel spectrum to better capture infor-
mation from the frequency domain. After that, an AM estimator
is employed to predict each AM from phonemes. Finally, we
use hypothesis testing to analyze the correlation between each
phoneme-AM pair.

3.2. Notations

Our problem involves a set of paired voice recordings of
phonemes and AMs, where we aim to predict each AM from
different phonemes. We begin by segmenting the record-
ings into phonemes, which can be represented as P =
p(1), p(2), . . . , p(k), where k denotes the total number of dis-
tinct phonemes. Similarly, the AMs can be represented as
AMs = m(1),m(2), . . . ,m(n), where n represents the num-
ber of summarized AMs. We refer to the entire dataset as D.

To simplify the training and evaluation process, we divide
D into three subsets. The first subset is the training set Dt,
which is used for estimator learning. The second subset is the
validation set Dv1 , which is used for estimator selection. Fi-
nally, the third subset is the validation set Dv2 , which is used
for hypothesis testing and AM-phoneme pair selection.

3.3. AM Estimator

We leverage an AM estimator Eij to predict the j-th AM from
the i-th phoneme m(i) = Eij(p

(j) as an estimator that maps
the j-th phoneme to the i-th AM. To begin, we transform each
phoneme into a log mel spectrum, which is essentially an image.
This is a classic regression problem, and therefore, we need a
model with strong feature extraction capabilities to extract in-
formation from the image. We develop a modified version of
the classical MNasNet model developed by Google AI. It is de-
signed to be efficient, lightweight, and highly accurate for tasks
such as image classification and object detection. [21]. Our
modification retains the original structure, but with a few modi-
fications to the input and output layers. Specifically, we change
the input Conv2d module to accept only 1 channel, and the out-
put Linear module to produce only 1 value. In addition, since
this part is model-independent, other models such as ResNet
[22] are also capable of achieving the same function.

3.4. Hypothesis Testing for Phoneme-AM Predictability

Once AMs are predicted from different phonemes, the next step
is to determine whether a specific phoneme can actually predict
an AM. To do this, we use hypothesis testing for each AM-
phoneme pair separately. Firstly, we write the null hypothe-
sis and the alternative hypothesis for the i-th AM and the j-th
phoneme as

H0 : AM m(i) is not predictable from phoneme p(j)

H1 : AM m(i) is predictable from phoneme p(j)

To reject the null hypothesis H0, we need to compare our
estimator Eij for the AM m(i) when using phoneme p(j) as
input with a chance-level estimator Cij . If the performance of
Eij is statistically significantly better than Cij , we can reject
H0 and accept H1. To estimate the chance level for phoneme
p(j) in our training set Dt, we use the mean m(i) of all instances
of that phoneme in the set. Specifically, we calculate a constant
value Cij as follows: Cij = 1

|Dt|
∑

m(i)∈Dt
m(i). We can

express the hypotheses as:
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H0 : µ(εij/ε
C
ij) ⩾ 1

H1 : µ(εij/ε
C
ij) < 1

Here, µ(·) represents the mean function, and εij and εCij are
the mean squared errors (MSE) of the estimators Eij and Cij

on the validation set Dv2 , respectively. We can compute them
as follows:

εij =
1

|Dv2 |
∑

m(i)∈Dv2

(m̂(i) −m(i))2

εCij =
1

|Dv2 |
∑

m(i)∈Dv2

(Cij −m(i))2

To conduct repeated experiments, we need to train the es-
timators multiple times. In each iteration, we randomly split
the dataset into Dt, Dv1 , and Dv2 . We then use the one-sided
paired-sample t-test to test the hypothesis. The confidence in-
terval (CI) bounds are:

CIl = µ

(
εij
εCij

)
− t1−α,ν · σ(εij/ε

C
ij)√

N

CIu = µ

(
εij
εCij

)
+ t1−α,ν · σ(εij/ε

C
ij)√

N

Here, σ(·) represents the standard deviation function, N
represents the number of experiments, α represents the signifi-
cance level, and ν = N − 1 represents the degree of freedom.
For this project, we set N = 10, and we choose α = 0.05 to
obtain statistically significant results. We can read the value of
t1−α,ν directly from the t-distribution table. To test the hypoth-
esis, if the CI upper bound CIu < 1, we can infer that we suc-
cessfully reject H0 and accept H1, meaning that the AM m(i)

is predictable from phoneme p(j). On the contrary, if CIu ≥ 1,
we cannot reject H0, indicating that the result is not statistically
significant.

4. Experiments
4.1. Dataset

We conducted experiments on a private audio-visual dataset D.
The dataset contains 1,026 individuals’ paired voice recordings
and scanned 3D facial shapes. Each recording is a raw speech
speaking out general phonemes and sentences with a length of
1-2 minutes. Each facial data consists of 6790 3D-coordinate
points collected from one person.

4.2. Data Processing and Training

Phoneme segmentation. To identify predictable AMs and their
corresponding phonemes, the first step is to extract individual
phonemes from the dataset. However, due to the large amount
of data and the complexity of distinguishing phoneme intervals,
manually segmenting phonemes can be laborious, difficult, and
imprecise.

To improve the accuracy of phoneme segmentation, we
employ state-of-the-art phoneme segmentation approaches.
Specifically, we use the Wav2Vec2-Large-XLSR-53 model [23]
developed by FAIR, which learns powerful speech representa-
tions from more than 50.000 hours of unlabeled speech. This

Figure 2: (a) The selected landmarks. (b) The visualization of
the 6 most predictable AMs. They are arranged in descending
order from left to right and top to bottom. Numbers in the face
denote the index of landmarks.

model is trained using a contrastive task on masked latent
speech representations and can learn a quantization of the latent
shared across languages. It is then fine-tuned on multi-lingual
labeled common voice data. Since our data primarily contains
standard English pronunciations, this model can provide rela-
tively high segmentation accuracy.

We adopt the wav2vec2-xlsr-53-espeak-cv-ft
in huggingface 1 in our experiments. After splitting, we choose
the most frequently used phonemes which have number of sam-
ples ≥ 5000. The detailed list is provided in the label of Fig. 3.
For each phoneme recording, we follow [11] and perform 64-
dimensional log mel-spectrograms using an analysis window of
25ms, with a hop of 10ms between frames. We perform nor-
malization by mean and variance of each mel-frequency bin.
AM summarization. We summarize the most commonly used
AMs [24, 25, 26, 27, 28], including distances, proportions, and
angles in Table 1. The selected landmark is shown in Fig. 2
(a). These AMs are more robust than 3D coordinate representa-
tions. This is attributed to the complete elimination of variations
induced by spatial misalignment, thus rendering them more re-
liable and resistant to perturbations. The ground truth AMs are
normalized to have a mean of zero and a variance of one.

Table 1: The summarized AMs.

distance
31-37 32-36 40-42
39-43 33-35 50-53

2-7 30-53 59-53
55-63 54-61

proportion
31-37 / 27-30 32-36 / 27-30 31-37 / 59-53
32-36 / 59-53 54-64 / 31-37 56-62 / 31-37

angle
31-30-37 31-29-37 29-30-34

Training details. For each phoneme-AM pair, we conduct
10 repeated experiments to ensure statistical significance. In

1https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft
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each experiment, we randomly sample 5000 data samples and
randomly split them into the Dt/Dv1/Dv2 set in the ratio of
70%/10%/20%. We follow the typical settings of Adam [29]
for optimization of the estimator. The loss function we use is
the mean squared error loss. The size of the mini-batch and
learning rate is set to 128 and 0.0001, respectively.

4.3. Results

4.3.1. Analysis of phonemes

For each phoneme, we calculate the average 1 − CIu result
with every AMs. As can be seen from Fig. 3, /i:/ got the high-
est avg. 1 − CIu value 0.199, and /b/ got the lowest value
-0.06. When 1 − CIu is lower than 0, AMs are averagely un-
predictable from the phoneme. The three phonemes with the
lowest and negative values are /t/, /b/ and /d/, which are all
plosive consonants. During the pronunciation of plosive con-
sonants, we complete stoppage of airflow followed by a sud-
den release of air through trivial mouse open and close, and
there is minimal movement of the facial muscles and structures.
Consequently, the prediction of any acoustic model based solely
on such phonemes is challenging. On the contrary, most vow-
els achieve good performance in the test set, and all the top
6 phonemes belong to vowels with 1 − CIu > 0.10. Com-
pared with consonants, there is no constriction of airflow in the
vocal tract when pronouncing vowels. In order to produce spe-
cific vowels, the facial muscles have relatively greater move-
ment during the pronunciation of these phonemes, such as jaw
movement due to mouth opening or lip spreading. Thus vowel
phonemes may carry more information about facial features.
This, therefore, can make the model better capture the hidden
correlation when predicting AMs.

1
−
𝐶𝐼
!

Figure 3: Phonemes in descending order by avg. 1− CIu.

4.3.2. Analysis of AMs

Similarly, for each AM, we also calculated the average 1−CIu
results with all phonemes. To intuitively locate the most pre-
dictable AMs (with the highest avg. 1 − CIu) on the 3D face,
we visualize them in Fig. 2 (b). Most of the predictable AMs
are around the nose and mouth. On the contrary, AMs around
the eyes are less predictable. This is consistent with the fact
that the nose and mouth shapes (distances, proportions, and an-
gles) affect the pronunciation of phonemes. Other than the nose
and mouth, the jaw is another region frequently occurring in
the most predictable AMs. Since the jaw is another region that
exhibits frequent movement during pronunciation, we hypothe-

size that for a specific AM, if it is more frequently moved during
the pronunciation of phonemes, the AM is generally more pre-
dictable. We further verify this hypothesis in the next section.

4.3.3. Relationship between phonemes and AMs

Table 2: Detailed results of phoneme-AM pairs.

AMs /E/ /D/ /f/ /i:/ /v/ /w/ /æ/

39-43 0.10 -0.04 0.08 0.23 0.11 0.18 0.18
31-30-37 0.10 0.04 0.19 0.11 0.10 0.21 -0.09

50-53 0.05 0.09 -0.07 0.21 0.06 0.11 0.21
2-7 0.02 0.08 0.05 0.04 -0.03 0.08 0.09

We investigate the detailed relationship between phoneme
and AM pairs to verify our hypothesis. As shown in Table 2,
we list 4 typical AMs paired with 7 phonemes, where 39-43
is an oblique distance of the lip, 31-30-37 is an angle in the
nose, 50-53 is the distance between the lip and jaw, and 2-7
is the distance between eyebrow. In the case of AM 2-7, no
matter pairing with any phoneme, the value is relatively low
(all 1 − CIu values close to 0). During the pronunciation pro-
cess of any phonemes, the movement of this particular region is
very limited. Therefore, phonemes can barely carry information
about AMs in this part. However, for 39-43, it shows that /i:/,
/w/, and /æ/ have the highest value. When pronouncing these
three phonemes, the mouth usually grins in order to control the
output airflow. And the distance between facial landmarks 39
and 43 could slightly influence the airflow from a physical per-
spective, therefore the phoneme produced may have subtle dif-
ferences. In contrast, when pronouncing /f/ and /D/, this AM
barely moves. Thus, hardly can this AM influences the output
airflow. The results verify that it is less predictable for these
phoneme-AM pairs. Similarly, the phenomenon also occurs in
other AMs like 50-53. It is more predictable when pairing with
phonemes than needing mouse opening. All these experiments
verify that for a specific AM, if it is more frequently moved
during the pronunciation of phonemes, then the AM would be
more predictable.

5. Conclusions
In this work, we delve deeply into a fundamental question:
whether there exists any “enigmatic” link between phoneme and
facial features. If so, whether those “enigmatic” links can be
quantitatively described? As a forerunner in this field, we de-
sign a phoneme-AMs paradigm, which enables us to explore the
speech-face relationship in a fine-grained manner. Hypothesis
testing is utilized to verify whether an AM is predictable from
a phoneme. Experiments show that AMs are averagely more
predictable with vowels compared with consonants, especially
plosives, and are consistent with the physiological explanation.
On the other hand, most of the predictable AMs are around
the nose, mouth, and jaw. Results also verify that for a spe-
cific AM, if it moves more frequently during phoneme pronun-
ciation, the AM will be more predictable since the phonemes
might carry this hidden information during pronunciation. We
hope our work lays a foundation for this field. In the future,
we would like to scale up the range of phonemes and AMs to
discover more hidden relationships. Moreover, we are inves-
tigating models that make use of the found hidden correlation
knowledge in scenarios like 3D face reconstruction.
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