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Abstract
The auditory attention decoding (AAD) approach aims to

determine the identity of the attended talker in a multi-talker
scenario using neuro recordings. In the past few years, vari-
ous AAD methods have been proposed, and most of them rely
on speech envelope reconstruction, which unfortunately face
challenges with shortened decoding windows. Inspired by the
findings that voices with different acoustic features arouse di-
verse brain activities in a very short period, this paper pro-
poses to use speaker voice features instead of speech envelope
as a speaker indicator for conducting AAD in short-time situ-
ations. To achieve this, a novel dual-branch convolutional net-
work (DBCNet) is proposed to estimate speaker features from
EEG. Results show that the proposed method achieves higher
decoding accuracy than existing methods for short decoding
windows (approximately 75% for 0.3-s window and 82% for
1.0-s window).
Index Terms: EEG, auditory attention decoding, speaker fea-
ture, dual branch convolutional network

1. Introduction
Human are able to follow a specific speaker of interest amidst
interference sources. Such phonemenon is called “cocktail
party effect” [1] and it could be attributed to the auditory atten-
tion during speech perception and the cognitive control in the
human brain [2, 3]. Auditory attention is a cognitive process
that involves directing cortical processing resources to the most
relevant sensory information, and several studies have demon-
strated that the attention-driven response to a target speech can
be decoded from the cortical responses in the human brain
[4, 5]. Due to the enormous potential of neuro-steered hear-
ing aids, the technology of auditory attention decoding (AAD),
which uses non-invasive brain recordings to identify which
speaker a listener is attending to, has recently come into focus
[5, 6, 7, 8].

The generally used AAD methods can be divided into two
categories: classification-based and regression-based methods.
[9]. In classification-based approaches, the attention is directly
predicted in an end-to-end fashion. However, the underlying
characteristics of the classification basis cannot be clearly ex-
plained, and their generalization ability remains to be confirmed
[10]. Regression-based methods can be further divided into for-
ward and backward models, depending on the mapping direc-
tion between EEG and auditory stimulus. Specifically, forward
models estimate the EEG responses from auditory stimulus, in
contrast, backwad models, also known as stimulus reconstruc-
tion approaches, resonstruct speech envelopes from EEG sig-
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nals [11]. The target speaker is then determined according to
the correlation between estimated and actual envelopes of the
competing speech. For AAD, backward decoding models have
been demonstrated to outperform forward models [9], therefore,
current research focus has shifted to backward models [11]. Al-
though significant progress has been made in recent years on
stimulus reconstruction methods [5, 6, 12, 13, 14], their de-
coding accuracy is still limited by the properties of speech en-
velopes. Specifically, as the duration of speech stream becomes
shorter, the distinction between the envelopes of the speech and
its competing speech becomes more difficult [8], necessitating
the use of longer time windows for precise decoding. This is
impractical for real-time applications [14]. Consequently, it is
necessary to explore other speaker indicators beyond speech en-
velopes to conduct AAD.

While speech envelopes primarily carry information on
speech contents [15], it has been shown that speaker identity
analysis occurs in the brain when people attend to a speaker’s
speech [16]. Furthermore, studies on the hierarchy and time
course of voice signal perception [17, 18, 19, 20] suggest that
voice feature based identity analysis is processed at a lower pro-
cessing level and more quickly than speech content analysis.

In light of these findings, we propose to employ speaker
voice features instead of speech envelopes to indicate the
speaker in the AAD task. To accurately extract speaker features
from EEG, we futher propose a novel dual branch convolutional
network (DBCNet) that accepts EEG data in both the time and
frequency domains as input. We posit that incorporating EEG
spectra is beneficial since some noise could be addressed more
conveniently in the frequency domain. By employing speaker
features and DBCNet, the proposed AAD approach offers two
advantages over existing methods. First off, it can handle short-
duration speech streams more effectively because it does not
rely on the accurate reconstruction of speech envelopes. Sec-
ond, the DBCNet can leverage the frequency-domain informa-
tion in the EEG data to improve the accuracy of speaker fea-
ture estimation. Overall, experimental results demonstrate that
the proposed method achieves higher decoding accuracy than
the models based on stimulus reconstruction, which represents
a promising approach to AAD that addresses the limitations of
existing methods.

2. Problem Formulation
We consider the 2-talker case in this study. Let sa and su de-
note the attended and unattended speech stream observed by the
listener, respectively. The corresponding EEG recordings of the
listener can be modeled as:

E = A(sa, su) + n (1)
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Figure 1: (a) An overview of the proposed arhitecture. The d-vector extraction module takes speech signals as input and outputs d-
vectors correspondingly. The DBCNet maps EEG signals to the d-vector of the target speaker. (b) Proposed DBCNet. The channel
number of the three convolutional layers in the each branch is {4, 4, 256}. The kernel size and padding are respectively set as {(5, 5),
(5, 65), (32, 65)} and {(2, 2), (2, 0), (0, 0)}. The strides in all convolutional layer are set as (1, 1). The input and output size of the two
fully connected layers are set as {(256, 256), (2, 1)}.

where A(·) refers to the auditory pathway and n are the auditory
irrelevant EEG signals. The goal of the AAD task is to develop
a decoder D(·) to reconstruct the speech features of the attended
source, sa, from the EEG signals, so that:

d̂ = D(E) (2)

To accurately determine the speaker identity, the reconstructed
features should satisfy:

dis(d̂,dsa) < dis(d̂,dsu) (3)

where d is the feature from speech s such as envelope, spec-
trum, specker feature, etc. dis(·) refers to the measurement of
distance such Euclidean distance.

3. Model Description
we propose a novel AAD architecture, as illustrated in Fig. 1
(a), which inventively incorporates speaker features into AAD.
Our design is made up of three main parts: a feature extractor
to obtain speaker features from speech, a DBCNet to estimate
speaker features from EEG, and a decision module to choose
the target speaker. The speaker feature we use is the d-vector
[21], which can be extracted using a rather simple network and
has been demonstrated to perform well in speaker verification
tasks. Given that we utilize the same d-vector extractor as in
[21], we don’t go into more detail on this component in this
study.

3.1. Dual Branch Convolutional Network (DBCNet)

Due to the ability to extract spatial features, convolutional neu-
ral networks (CNNs) have been widely used in AAD in recent
years[14, 22, 23]. As a result, we also accept CNN as the back-
bone of the proposed DBCNet, as illustrated in Fig. 1 (b).

We employ a moving window to split EEG signals into
multiple segments, which are represented by the matrix E =
[c1, c2, ..., cN ] ∈ RTe×N , where N = 64 represents the to-
tal number of channels, and ci ∈ RTe×1 denotes the channel-
wise EEG signals with the length of Te, which varies depend-
ing on the length of the segment being analyzed. Motivated by
the studies that the brain’s responses to auditory stimulus could
be reflected in the EEG recorded from different scalp regions
[24, 25], we first assign differentiated weights to the EEG of

different channels. To achieve this, we employ a learnable pa-
rameter for time domain EEG ET and the corresponding am-
plitude spectrum EF :

EF = ||FFT (hann(ET ))||2 (4)

(ET
w , E

F
w ) = (ET , EF ) · wc (5)

where wc ∈ RN are the learnable channel weights and hann
refers to the hanning window. Here ET and EF shares the
same shape of 1× TE ×N . Since EEG are measured in a non-
invasive way, the signals suffer significant degradation duaring
propagation. To enhance the EEG in each channel, we first em-
ploy Conv blocks with small kernels to model it and the EEG
of adjacent channels together:

E
T/F
c1 = SELU(BN(Conv(ET/F

w ))) (6)

where E
T/F
c1 ∈ R4×Te×N is the enhanced EEG signals and

each Conv block consists of a 2-D convolutional layer, a BN
(batch normalization [26]) layer and a SELU [27] activation
function.

To exchange information between the two domains, we then
employ a time-frequency interaction (TF-IA) module:

ETF = ET
c1 c⃝EF

c1 (7)

E
T/F
ia = E

T/F
c1 c⃝SELU(BN(Conv(ETF ))) (8)

The TF-IA module consists of two Conv blocks and three con-
catenations which are denoted as c⃝ in Fig. 1(b). The two out-
puts of the TF-IA module have the shape of RC1×Te×(N+1).
After the TF-IA module, a couple of Conv blocks are ap-
plied to further extract speaker features. The output is a set
of speaker features represented as ET

c2 ∈ RC2×T ′
e×1 and EF

c2 ∈
RC2×T ′

e×1, where C1, C2, T ′
e equal 4, 256 and Te−31, respec-

tively. To obtain the most representative feature, a max pooling
layer is applied along the time dimension. Finally, as a trade-
off between model complexity and generalizability, FC blocks,
each of which consists of a fully connection layer and a Tanh
activation function each, are employed to achieve a non-linear
mapping as follows.

d̂ = FC(FC(ET
M ) c⃝FC(EF

M )) (9)

d̂ is the estimated d-vector which shares the same shape with
the target d-vector d.
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3.2. Loss Function and Decision Module

The output of the DBCNet is the estimated d-vector d̂. Dur-
ing training, to minimize the Euclidean distance between d̂ and
the attended speaker’s d-vector, dsa , while maximizing the dis-
tance between d̂ and the unattended speaker’s d-vector, dsu ,
the loss function is given by:

L = ||d̂− dsa ||22 − ||d̂− dsu ||22 (10)

During the testing phase, we make decisions based on the Eu-
clidean distance between the estimated d-vector, d̂, and the
two actual d-vectors. The following principle is used to decide
whether a decision y is correct:

y =

{
1, ||d̂− dsa ||2 < ||d̂− dsu ||2
0, ||d̂− dsa ||2 ≥ ||d̂− dsu ||2

(11)

where 1 and 0 refer to right and wrong, respectively.

4. Experimental Setup
4.1. Data Specifications

Two publicly accessible datasets—an AAD dataset [28] and a
speaker identification dataset [29], are used in our study. The
AAD dataset consists of EEG recordings from 22 subjects with
normal hearing who participated in 32 trials lasting 50 seconds
each while listening to auditory scenes with a male and female
speaker speaking simultaneously (we discard the data of one
subject due to the break in the experimental session). The sub-
jects were asked to focus on one speaker and ignore the other
throughout each trial and the EEG signals were captured during
the whole experiment. The details of this dataset are available
in [28]. The speaker identification dataset used for d-vector ex-
traction is detailed in [29].

For EEG, we use the same data preprocessing method as in
[28], the only difference is that we employ a sampling rate of
128 Hz and a cutoff frequency of 64 Hz. The speech signals in
both datasets are resampled to 16 kHz for d-vector extraction.

4.2. Training Setup

We use 6-fold cross-validation (CV) over all the trials to evalu-
ate the proposed and the compared methods. Each subject’s tri-
als are split into six groups as evenly as feasible, one of which is
utilized for testing while the others are used for training. After-
wards, EEG and speech signals are time aligned and segmented
by the moving windows with 50% overlapping. Only segments
where both speech streams are active are kept. Such process
is repeated for six times so that segments from every trial are
tested once. To remove the bias from the random grouping, the
same procedure is further done five times, and the final result is
the average of the five. When comparing the outcomes of dif-
ferent experimental configurations, we use the Wilcoxon-test
[30] to compare the results.

For training, we use the Adam optimizer. The mini-batch
size is set to 32, and the learning rate is set to 0.001. We run
80 training epochs on each model. During testing, for each
EEG segment, we make decision as described in Section 3.2.
The decoding accuracy is defined as the proportion of EEG seg-
ments in which auditory attention is correctly decoded. As neu-
ral network training can result in random variations from epoch
to epoch, we calculate test accuracy as the median accuracy of
the last five epochs as in [31].

Since there are two types of d-vectors: a short-term d-vector
that corresponds to a specific speech segment and a long-term
d-vector that is the centroid of all short-term d-vectors in the
training dataset, we consider three training and testing strategies
that use different d-vectors, as shown in Table 1. The strategy
with the highest decoding accuracy is regarded as the default
one.

Table 1: D-vectors used in the three strategies and the corre-
sponding decoding accuracy

Strategy Training Testing Accuracy (%)

I long-term long-term 74.2
II long-term short-term 76.0
III short-term short-term 81.3

5. Results and Analysis
5.1. Effect of Different Strategies

We first test the proposed method using the three training and
testing strategies mentioned in Section 4.1. Since we focus
on decoding with short windows, we conduct the experiments
using a 1.0-second window, which satisfies the human atten-
tion switch criteria [23]. Across the three strategies, the pro-
posed method achieves an average decoding accuracy of 74.2%,
76.0%, and 81.3%, respectively. The results show that the
best decoding accuracy is obtained when short-term d-vectors
are used in both the training and testing stages. This may be
attributed to the correspondence between EEG signals and d-
vectors, as variations in intonation can be reflected in both the
speaker features and the listener’s EEG. As a result, in the sub-
sequent experiments, we adopt Strategy III as the default strat-
egy.

5.2. Ablation Analysis

To demonstrate the superiority of employing speaker features in
AAD and the effectiveness of the proposed DBCNet, we eval-
uate the decoding accuracy of three different models. The first
model, called CNN-D-vector, shares the same structure as the
time branch of the DBCNet. The second model, denoted as
CNN-Envelope, is similar to the CNN-D-vector but replaces the
max pooling layer with a LSTM layer for envelope reconstruc-
tion. The third model is the proposed DBCNet-D-vector. To
control for the parameter size, we increase the channel num-
bers of the two CNN models such that the three models share
the similar parameter size. The experiments are conducted with
four different windows: 0.3-s, 0.5-s, 1.0-s, and 3.0-s, and the
results are shown in Figure 2.

The CNN-Envelope achieves average decoding accuracies
of 51.3% , 53.3%, 57.5%, and 68.9% for the four different win-
dows. In contrast, the CNN-D-vector achieves significantly
higher decoding (p < 0.001) accuracies of 73.1%, 76.2%,
77.5%, and 77.3% for the same windows, respectively. These
results demonstrate the advantage of incorporating speaker fea-
tures into auditory attention decoding. Specifically, the CNN-
D-vector outperforms the CNN-Envelope, especially for shorter
decoding windows, and the difference becomes less pronounced
for longer windows. This observation supports our hypoth-
esis that speaker features are more reliably distinguishable
across different durations, while longer windows are required
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Figure 2: Average decoding accuracy of CNN-D-vector, CNN-
Envelope and DBCNet-D-vector for different window sizes over
all subjects.

Model CCA CRNN DBCNet

Accuracy (%) 52.6 65.3 81.3

Table 2: Average decoding accuracy (%) of proposed DBCNet
and three other models for 1.0-s window.

for envelope-based methods to achieve similar levels of distin-
guishability.

With the addition of the frequency branch to the CNN-D-
vector, the DBCNet-D-vector exhibits superior performance for
all windows, achieving an average accuracy of 74.9% for 0.3-
s decoding window, 78.5% for 0.5-s decoding window, 81.3%
for 1.0-s decoding window, and 82.4% for 3.0-s decoding win-
dow. Notably, the improvement in decoding accuracy is statis-
tically significant (p < 0.005) for our focus duration 1.0-s. We
attribute the improvement to the incorporation of EEG spectra,
which allows for the identification and exclusion of components
unrelated to auditory attention in the frequency domain. As dif-
ferent brain activities may occur simultaneously, the use of EEG
spectra can aid in disentangling these activities and improving
the accuracy of auditory attention decoding.

5.3. DBCNet vs Other Models

We further evaluate the effectiveness of the proposed method
by comparing it with other decoding models. Specifically, we
considere a state-of-the-art (SOTA) linear model CCA [32], a
CRNN model [14] which combines the advantages of CNN and
RNN. The CRNN we use has a similar parameter size with the
proposed DBCNet by increasing the number and size of the con-
volutional layers. The window length is fixed at 1.0-s, and the
results are summarized in Table 2.

The decoding accuracies of the compared models are 52.6%
and 65.3%, respectively. As predicted, the proposed method
achieves noticeably higher decoding accuracy (p < 0.001) than
other models that rely on speech envelopes. These results fur-
ther validate the effectiveness of the proposed method in ad-
dressing the limitations of existing approaches.

5.4. Effect of Frequency Bands

The EEG signals collected from the human brain encompass a
variety of frequency bands, each of which is associated with dis-
tinct physiological activities [33]. To determine which of these

Figure 3: Box-plot that shows the average decoding accuracy
using EEG of different bands for 1.0-s window.

frequency bands is most indicative of individual differences in
speech, we investigate the decoding accuracy of the proposed
method using EEG data of different frequency bands, including
delta (0.1-3 Hz), theta (3-8 Hz), alpha (8-13 Hz), beta (13-30
Hz) and gamma (>30 Hz). As before, we use a 1.0-s window
and the results are presented in Fig. 3.

Acorss the 21 subjects, the proposed model achieves aver-
age decoding accuracies of 64.9%, 70.2%, 72.2%, 75.7% and
82.3% for the the five bands. The results indicate that high de-
coding accuracy is achieved with high frequency bands, particu-
larly the gamma band, with an accuracy of 82.3%. This fingding
aligns with previous research [34] which established a correla-
tion between gamma oscillations and the binding of acoustic
features, such as pitch, timbre, and harmony, in speech compre-
hension. Interestingly, we also observe relatively low decoding
accuracies with the three low frequency bands. This contrasts
with the stimulus reconstruction methods, which primarily em-
ploy low frequency EEG siganls. The difference illustrates how
our method differs from previous methods and the embodies the
indenpendence of speech analysis and identity analysis from the
perspective of decoding.

6. Conclusions

In this paper, we propose a novel AAD architecture, which
creatively decodes target speaker using EEG and speaker fea-
tures. To extract speaker features from EEG, we design an in-
ventional dual branch convolutional network which takes the
advantages of EEG in both time and frequency domains. To
vertify the effectiveness of our architecture, we conduct several
experiments on a public dataset. Results shows that our system
could achieve an average decoding accuracy of ∼82% for 1.0-s
decision window, which outperforms the methods that require
speech envelope. The high performance of our architecture in
time-constrained situations highlights its potential for practical
applications, such as brain-informed hearing aids.
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