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Abstract
Most current automatic speech recognition (ASR) models use
decoders that do not have access to global contextual informa-
tion at the token level. Therefore, we propose a decoder struc-
ture with text-level global contextual information. We construct
the global information encoder based on non-autoregressive
recognition. To eliminate the non-autoregressive independence
assumption, we add a self-attention layer with rotary posi-
tion encoding. The obtained text-level global contextual in-
formation and the decoder are fused as cross-attention to con-
struct a decoder with contextual information. Our model can
achieve a character error rate of 3.92% on the AISHELL-1 val-
idation set and 4.35% on the test set, reducing the error rate
by 1.72%(dev)/2.13%(test) compared to the baseline model,
achieving SOTA performance. Finally, we also use visualiza-
tion techniques to explain the role of global information in the
decoder.
Index Terms: speech recognition, transformer, attention, con-
textual information, non-autoregressive

1. Introduction
In recent years, significant progress has been made in research
on end-to-end (E2E) models in automatic speech recognition
(ASR) systems [1, 2, 3, 4, 5, 6, 7]. The decoding method of
E2E ASR can be divided into two types: autoregressive and
non-autoregressive [8, 9]. The autoregressive decoder is primar-
ily based on the attention mechanism decoder [10]. It can only
access information before its own time step at each step and can-
not access future information. The CTC-based decoder domi-
nates the non-autoregressive decoder [11, 2, 3], which makes a
strong independence assumption. It decodes the token indepen-
dently for each time step and outputs the maximum probability
path result. Based on their decoding principles, autoregressive
decoders face the problem of amplification of cumulative errors
due to sequence antecedent errors, while non-autoregressive de-
coders face problems such as the lack of global contextual cor-
relation due to independent decoding.

Several approaches have been proposed to address the lim-
itations of these decoding mechanisms. For instance, CUSIDE
proposes training an additional feature predictor to predict fu-
ture block features and inject context information into the au-
toregressive Transformer [12]. Similarly, [13] proposes dy-
namically selecting contextual information with the most dis-
criminatory degree for speech recognition based on the current
frame. In [14], a dual decoding method based on tokens of dif-

*These authors contributed to the work equally and should be re-
garded as co-first authors.

†Corresponding authors.

ferent scales is proposed to fuse dense information of small-
scale tokens with the sparse information of large-scale tokens
to achieve internal contextual transfer. [15] proposed a self-
attention mechanism based on the combination of similarity and
content to influence the decoding of the current location us-
ing information from other locations with similar information.
However, these studies are limited by the autoregressive decod-
ing mechanism and usually provide only limited information on
the future context of the receptive field. This contextual infor-
mation lacks the ability to represent distant contexts. There-
fore, it is ineffective in improving cumulative errors caused by
antecedent errors, especially in the case of initial token recog-
nition errors. Compared to token representations, the ability of
audio to represent information is sparse, as it can still express
its original information if the audio is downsampled by a factor
of 2 or even 4, while it is difficult to recover the original in-
formation if the tokens are downsampled. Therefore, construct-
ing contextual information at the text level is more beneficial
to improve ASR performance. We propose leveraging the non-
autoregressive one-step decoding feature to pre-identify audio
representations and obtain potential recognition results to ad-
dress this. These results are then recorded using the 2D ro-
tary position embedding (2DRoPE) [16] and re-encoded using
the multi-headed attention (MHA) mechanism to reduce the ef-
fect of independence assumption and generate global contex-
tual representations. The latent representations of the audio and
text-level global contextual information are then fed into the
decoder for integrated decoding. In summary, the main contri-
butions of this paper are as follows:

1. A non-autoregressive-based contextual encoder is proposed
to construct text-level global contextual information to help
the autoregressive decoder reduce the error rate.

2. In the contextual encoder, we introduce a self-attention struc-
ture with 2DRoPE position encoding to help the model break
the non-autoregressive independence assumption.

3. We show that the performance of the decoder with the intro-
duction of text-level global contextual information achieves
SOTA performance, and we also show how the text-level
global contextual information helps the autoregressive de-
coder to perform decoding.

2. Method
To make the global context information available to the de-
coder, we construct an Acoustic Encoder (AE), a Contextual
Encoder (CE), and a Decoder. Figure 1 shows the overall ASR
framework structure. The Acoustic Encoder is the Transformer
structure responsible for encoding the acoustic feature signal.
The Contextual Encoder predicts the corresponding text non-
autoregressively, using the output from the Acoustic Encoder.
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Figure 1: General structure of the model.

The global context encoding information is extracted from the
last hidden layer of the Contextual Encoder. The Decoder then
utilizes the Acoustic Encoder and Contextual Encoder outputs
to make token predictions. In the following sections, we will
describe each component in detail and explain how the Decoder
leverages contextual information.

2.1. Feature Extraction and Acoustic Encoder

We opted to use FBank features over MFCC for our ASR sys-
tem, as it provides a more detailed representation of the au-
dio signal. However, the computation of the Transformer, the
main structure of our Acoustic Encoder, is proportional to the
square of the sequence length. Therefore, to improve computa-
tional efficiency, we downsampled the FBank features through a
2D convolutional network. Specifically, we employed a 4-layer
VGG network to compress the FBank features to 25% of their
original size. The resulting features are then fed into a stan-
dard 6-layer Transformer encoder to derive the potential audio
representation, denoted as OAE = o1, o2, . . . , oT .

2.2. Contextual Encoder

This section adopts the non-autoregressive structure introduced
in a previous study [8]. To generate a position vector P , we
set its length to a fixed value of L, which is determined by the
maximum text length in the dataset. We then use the position
vector Vpos as a query vector to perform cross-attention with the
output OAE of the Acoustic Encoder. The calculation formula
is presented below:

Vpos = POSEmbedding(L) (1)

H = CrossAttentionBlock(Vpos, OAE , OAE) (2)

However, non-autoregressive prediction assumes that each
word is independent of the others, which can limit the ability of
the model to capture text-level global contextual information.
To address this limitation, we introduce self-attention based on
2DRopE position coding, which combines relative and absolute
positioning information [16]. To further enhance the ability of
the model to extract global context, we add an additional self-
attention module with N −1 layers. Figure 2 depicts the result-
ing Contextual Encoder structure.

The overall function of the Contextual Encoder is to pre-
dict the Acoustic Encoding range and the corresponding text

Figure 2: Contextual Encoder structure.

for each decoding position using position vectors. The hidden
layer vector in the contextual decoder contains text-level global
contextual information, which is optimized to match the target
text.

2.3. Decoder

The decoder design is rooted in the Transformer autoregressive
decoder, which operates on a step-by-step prediction basis and
lacks access to global contextual information. With the intro-
duction of contextual information, possible future information
can be sensed in advance through the attention mechanism, and
the contextual information can be used to make corrections to
existing predictions.

To harness the benefits of the global context information
provided by the Contextual Encoder, we developed three dis-
tinct structures, illustrated in Figure 3.

Figure 3: Three structures that integrate global information.
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Structure A and B models utilize the outputs of the Con-
textual Encoder and incorporate them into the Decoder as addi-
tional information. The Contextual Encoder outputs play a sim-
ilar role to Acoustic outputs in a standard Transformer decoder,
enabling the decoder to access potential future contextual infor-
mation and use it to refine its current predictions. The primary
difference between the structure A model and structure B lies in
the sequence of the Acoustic Encoder and Contextual Encoder
outputs. In Structure A, the Acoustic Encoder outputs precede
the Contextual Encoder outputs, while in Structure B, the order
is reversed.

Since the Contextual Encoder outputs are fixed in structures
A and B, we designed structure C, which integrates the Contex-
tual Encoder into the Decoder. In structure C, we achieve dy-
namic Contextual Encoder output changes by feeding each hid-
den vector of the Contextual Encoder layer into the correspond-
ing decoder layer. Since the layer structures of the Contextual
Encoder and decoder are similar, we merged them to form struc-
ture C depicted in Figure 3. However, this structure designed
this way leads to its inability to break the non-autoregressive
independence assumption. We will describe a comparison of
these three structures in the experimental section.

2.4. Joint Optimization

While training our speech recognition model, we employ the
cross entropy loss function to compute the loss value for both
the Decoder module and the Contextual Encoder module, opti-
mizing them simultaneously. However, given the varying dif-
ficulty of these two tasks, we adopt a loss weight adaptation
method based on [17], which adjusts the weight of different
tasks according to their error rate. Specifically, we define the
weight of each task as a function of γi and the character error
rate (CER), which serves as a metric of the model’s accuracy.
This function is expressed in Equation 3.

αi = −(CERi)
γi log(1− CERi) (3)

As evident from the formula, a higher weight is assigned
to a task with a relatively higher error rate. It is important to
note that at the start of training, the CER of a task may be equal
to or greater than 1, which can cause an error in the weight
calculation. Therefore, we treat the difficulty of the two tasks
as equal at the beginning of training. The total loss calculation
is expressed as Equation 4.

ℓ =

{
ℓCE + ℓDecoder ℓCE ≥ 1 or ℓDecoder ≥ 1

α1 × ℓCE + α2 × ℓDecoder others
(4)

Where ℓDecoder is the loss of the Decoder, ℓCE is the loss
of the Contextual Encoder.

3. Experiment and result
3.1. Experimental Setups

Our model is trained on the open source dataset AISHELL-1
[18], which contains 150 hours of training speech, 18 hours of
validation speech, and about 10 hours of test speech. All audio
is in 16KHz WAV format. We use an 80-dimensional FBank
feature, where the frame length is 25ms, and the frameshift is
10ms. Acoustic Encoder, Contextual Encoder, and Decoder lay-
ers are 6, 4, and 6, respectively. The hidden layer dimension is
512, and each layer has 6 attention heads. We use a dropout
rate of 0.1 to avoid overfitting and employ SpecAugment [19]

for data enhancement. We have a maximum of 20% for the
time mask and 50% for the frequency mask. Each batch con-
tains approximately 12.8 minutes of audio. We used 4 NVIDIA
RTX4090 GPUs and the Pytorch framework [20] for training.
We also use the Adam [21] optimizer and adopt the warm-up
strategy [10], where the warm-up step is 12000.

3.2. Different Decoder Structure Comparison Experiment

We test the three decoders in Figure 3 on the AISHELL-1
dataset with all the same experimental parameters, using the
greedy search for decoding while using the Transformer model
as the baseline. The final test results are shown in the following
table.

Table 1: Decoding structure comparison

Model name CER(%)
dev test

Transformer 5.78 6.67
Structure A 4.06 4.55
Structure B 4.08 4.56
Structure C 4.49 5.03

Based on the data presented in Table 1, it is evident that
all three structures exhibit improved accuracy rates compared
to the baseline, with structures A and B performing best and
showing the minimal difference. However, the error rate of
structure C is relatively high. We posit that this is due to in-
corporating a self-attention mechanism with relative location
encoding in structures A and B. This mechanism assists the
Contextual Encoder in breaking the independence assumption
in non-autoregression. To investigate this further, we conducted
a comparison experiment by introducing a cross-attention sim-
ilar to structure C in structure A, replacing the original self-
attention, and assessing the error rate of the Contextual Encoder.
The findings of this experiment are detailed in Table 2.

Table 2: The effect of self-attention

Model name CER(%)
CE Decoder

Structure A + Cross attention 6.28 4.97
Structure A + self attention 5.93 4.55

In this study, we compared the performance of two struc-
tures, one using self-attention and the other using cross-
attention. We found that the Contextual Encoder error rate of
the former is lower than that of the latter, with a reduction from
6.28% to 5.93%. This improvement leads to more accurate text-
level global contextual information obtained by the decoder and
ultimately results in better accuracy of the model. Interestingly,
we observed that the accuracy rate of the Contextual Encoder is
lower than that of the Decoder. This indicates that the Decoder
cannot directly extract accurate text information from the Con-
textual Encoder. Instead, the Decoder relies more on the con-
textual information provided by the Contextual Encoder. Based
on the above experiments, unless otherwise specified, all exper-
iments in this section will use structure A.
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(a) (b) (c) (d)

Figure 4: Attention weight assignment for different cross MHA in structure A decoder. (a) Attention to the Acoustic Encoder output and
decoder results in the penultimate layer. (b) Attention to the Acoustic Encoder output and decoder results in the last layer. (c) Attention
to Contextual Encoder output and decoder results in the penultimate layer. (d) Attention to Contextual Encoder output and decoder
results in the last layer.

3.3. Results on AISHELL-1

We tested the proposed Transformer with Global Contextual In-
formation Decoder (TGCID) model on the AISHELL-1 dataset,
where the beam size was set to 5. We compared it with com-
mon automatic speech recognition models such as Conformer,
WeNeT, etc. The test results are shown in the following table.

Table 3: Comparison with recently published models

Method CER(%)
dev test

(previous work)
Transformer [22] 5.78 6.67

Transformer + beamsearch [22] 5.65 6.48
ESPNet(Conformer) [23] 4.50 4.90

Branchformer [24] 4.19 4.43
WeNet [25] - 4.46

(our work)
TGCID 4.06 4.55

TGCID + beamsearch 3.92 4.35

Our proposed TGCID model achieved a CER of 4.55%
without beam search. With the addition of beam search, it
achieved even better results, with a CER of 4.35% on the test set
and 4.06% on the validation set, outperforming other compari-
son models. These results demonstrate that our model achieves
state-of-the-art performance.

3.4. The Role of the Contextual Encoder

To assess the impact of our proposed Contextual Encoder on
our model, we visualized the last two layers of the two cross-
attention parts of the decoder, as presented in Figure 4. The
horizontal axis represents the encoder output or contextual in-
formation, and the vertical axis denotes the decoder step. Figure
4a and Figure 4b illustrate the attention between the Decoder
and the Acoustic Encoder output, while Figure 4c and Figure
4d exhibit the attention between the Decoder and the contextual
information.

Figure 4a and 4b reveal that during decoding the first text,
the decoder does not allocate its attention to the beginning of
the encoder. Instead, it concentrates most of its attention on
frames 10 to 15, which contradicts the expectation that the first
word should be at the beginning of the audio. We speculate

that this is because the first character is predicted with only the
beginning symbol in front of it, making it challenging to locate
the corresponding position accurately.

Figure 4c shows that after introducing the context informa-
tion, the decoder initially allocates attention almost evenly to
each upper context information position. This helps it to ob-
tain more extensive context information to facilitate the deter-
mination of the predicted text. Meanwhile, Figure 4d depicts
that the attention between the decoder and the contextual infor-
mation becomes concentrated and varies almost monotonically.
The initial attention focuses on the front, helping the decoder
to correct previous character prediction errors caused by the at-
tention allocation error at the beginning. Subsequent decoding
steps concentrate on the vicinity of the corresponding position,
allowing the decoder to predict the current text more accurately
based on nearby information.

Thus, introducing context information enables the decoder
to obtain global information but also helps it to correct incorrect
information based on audio prediction, thereby enhancing the
overall recognition rate. This result supports our hypotheses
about the role of the Contextual Encoder.

4. Conclusions
This paper proposes a decoder that integrates global context in-
formation. We introduce a non-autoregressive module into the
standard Transformer model. We use a self-attention mecha-
nism with 2DRoPE position encoding to construct a Contex-
tual Encoder, breaking the non-autoregressive independence as-
sumption. Additionally, we explore how to fuse context infor-
mation with the decoder, and through experiments, we deter-
mine that the structure of context information introduced af-
ter the encoder information yields the best results. Our model
achieves an error rate of 4.35% on the AISHELL-1 dataset. Fi-
nally, we demonstrate that our contextual information can assist
the decoder in recognizing and correcting text through visual-
ization of the cross-attention in the decoder.
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