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Abstract

Developing a practically-robust automatic speech recognition
(ASR) is challenging since the model should not only maintain
the original performance on clean samples, but also achieve
consistent efficacy under small volume perturbations and large
domain shifts. To address this problem, we propose a novel
WavAugment Guided Phoneme Adversarial Training (WAPAT).
WAPAT use adversarial examples in phoneme space as aug-
mentation to make the model invariant to minor fluctuations in
phoneme representation and preserve the performance on clean
samples. In addition, WAPAT utilizes the phoneme representa-
tion of augmented samples to guide the generation of adversaries,
which helps to find more stable and diverse gradient-directions,
resulting in improved generalization. Extensive experiments
demonstrate the effectiveness of WAPAT on End-to-end Speech
Challenge Benchmark (ESB). Notably, SpeechLM-WAPAT out-
performs the original model by 6.28% WER reduction on ESB,
achieving the new state-of-the-art.

Index Terms: robust automatic speech recognition, data aug-
mentation, adversarial training

1. Introduction

Nowadays, there have been remarkable advancements in
Deep Neural Network (DNN) based Automatic Speech Recogni-
tion (ASR) [1], resulting in the emergence of numerous speech-
related applications that assist humans in their daily activities.
However, despite the impressive performance of ASR systems,
they are limited to specific tasks since they assume that the train-
ing and testing data are drawn from the same distribution [2].
Thus, applying ASR in real-world applications under diverse
environment is still a huge challenge [3, 4, 5].

In this work, we aim to address such a challenging cross-
domain scenario where an ASR system needs to be robust against
various potential distortion. However, there are two major chal-
lenges: 1) Robustness against perturbation: Real-world vol-
ume perturbation (e.g., environmental noise, reverberation, and
background speakers) significantly impacts the performance of
an ASR system [6, 7]. 2) Robustness Generalization: There
exist various type of volume perturbation in practical scenario.
However, a ASR is robust against one type of perturbation not
promised being robust under unknown domain (e.g., change of
speaking style). Existing work either adopt data augmentation
to improve ASR’s robustness against specific perturbation but
limited under unseen domain [8, 9, 10, 11], or use speech en-
hancement as a pre-processing to deal with various potential
noise [12]. Both of them fail to achieve a real-robust ASR sys-
tem which can be applied in the real world. Therefore, enhancing

the robustness of ASRs while improving their robustness gen-
eralization across different perturbation remains a significant
challenge.

To address the challenge, we propose a novel method called
WavAugment Guided Phoneme Adversarial Training (WAPAT)
by leveraging adversarial training (AT) technique. Though previ-
ous work [13] claimed AT results in a trade-off between robust-
ness and clean accuracy. However, research in the field of natural
language processing [14] and recent in computer vision [15]
demonstrated that aligning the distributions of adversarial and
original samples during AT can benefit robustness and clean
accuracy simultaneously. Borrowing the idea, we propose ap-
plying AT on phoneme space to create adversarial speech with
realistic semantic. To be specific, WAPAT employs a single-step
attack to generate adversarial perturbations on phoneme repre-
sentations. A data augmentation is further applied to guide the
attack for generating more stable and diverse phoneme adversar-
ial examples. In detail, with the time-domain WavAugment [16]
technique, we use Kullback-Leibler Divergence (KLD) to align
the adversaries on original samples and those on augmented sam-
ples. Furthermore, multiple augmentations in WavAugment are
used to guide the adversarial training for searching for diverse
gradient directions and leading to better generalization. Figure 1
shows the overall pipeline of WavAugment guided phoneme
adversarial training.

We further explore the impact of individual techniques in
WavAugment and their combinations with WAPAT on the per-
formance of the model. Our findings indicate that while hard
augmentations can improve robustness on some datasets, they
fails on others. It is reasonable to expect challenges in general-
izing audio augmentations across different domains, given the
inherent complexity of audio signals. Instead, our WAPAT con-
sistently improves performance in terms of both cross-domain
datasets and different types of transformations. The stability of
generalization indicates that the WavAugment-guided adversary
is effective in inducing robust features into target ASR.

In summary, we make the following contributions:

• To our knowledge, this is the first work that sheds light on
adversarial training on phoneme-unit space for improving
standard performance and generalization simultaneously.

• We propose WavAugment Guided Phoneme Adversarial Train-
ing (WAPAT), which employs phoneme representation of the
augmented audios to guide the generation of adversaries, re-
sulting in more diverse robust features.

• By combining SpeechLM [17] pre-training and WAPAT fine-
tuning, our method achieves new state-of-the-art performance
on the challenging benchmark ESB [18], which contains mul-
tiple speech datasets from a broad range of domains.
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Figure 1: The overview of our proposed WavAugment Guided Phoneme Adversarial Training (WAPAT). Left: from top to bottom, the
figures depict the log mel spectrogram of the base input with no augmentation, additive noise, band reject, pitch modification, time
masking and reverberation applied. Right: the pipeline of WAPAT, where the augmented samples are used to guide the generation of
adversaries during adversarial training on the symbolic phoneme space.

2. Related Work

Existing approaches for improving ASR generally from two
aspects: 1) Improving ASR’s robustness against specific per-
turbation: Early works have shown that several data augmenta-
tion methods, such as vocal tract length perturbation [8], volume
perturbation [9] and speed perturbation [11], can improve the
robustness of ASR models. SpecAugment [10] is widely used to
train ASR models due to its efficiency. Specifically, SpecAug-
ment randomly masks chunks of time or frequency channels on
spectrograms. However, these DA techniques are typically de-
signed manually for specific domains based on domain-specific
knowledge and experience. When dealing with an unknown
target domain or multiple domains, it can be challenging for
experts to apply specific transformations, or to construct and
fine-tune more sophisticated augmentation compositions [19].
Besides data augmentation, several work utilize adversarial train-
ing [20, 21] aiming to improve ASR’s adversarial robustness
under adversarial examples. However, all of these work target
ASR’s robustness under specific perturbation, and the improved
ASR is still limited on unseen domain. 2) Improving ASR’s
performance via pre-processing: To achive better performance,
there are also several works propose using speech enhancement
methods to remove noise from speech signals before passing
them through a standard ASR [12]. A more recent approach that
operates on raw waveform for real-time speech enhancement
is [22]. However, these methods often rely on front-end process-
ing modules, which decrease efficiency and add computational
overhead. Also, the speech enhancement method do not really
improve the robustness of ASR itself. In this paper, we aim to
build a truly robust ASR which is robust under multiple or even
unseen perturbations. It has the potential to be applied in various
applications in real-world setting.

3. Method

3.1. Adversarial Training on ASR

Consider the training utterance and text label set D =
{(xi, yi)

n
i=1}, an ASR model with learnable parameters θ, and

a recognition objective given by Connectionist Temporal Clas-

sification (CTC) loss Lctc. Adversarial Training (AT) aims to
optimize θ by solving a minimax optimization problem:

min
θ

E(x,y)∼D
[
max

δ
Lctc(x+ δ, y, θ)

]
s.t.||δ||p ≤ ϵ, (1)

where the inner optimization seeks perturbations δ on speech
values that maximize the loss, and the outer minimization up-
date θ to improve the worst-case performance of the network.
The boundary ||δ||p ≤ ϵ restricts the magnitude of the pertur-
bation. We use projected gradient descent (PGD) [23] for the
inner optimization. In the following section, we will tackle the
challenges of mitigating performance degradation and enhancing
the generalization ability of ASR models through AT techniques.

3.2. Phoneme Adversarial Training

We borrow the perspective of the AT on the contextualized
language representation, and propose a new Phoneme Adversar-
ial Training (PAT) for ASRs, i.e., conducting AT on the phoneme
representation space instead of raw input space. To accomplish
this, we leverage the SpeechLM framework proposed by [17]
to recognize speeches. The phoneme unit sequence of input x
can be obtained by applying a transformer based phoneme-unit
tokenizer T . In the inner maximization step of AT, we generate
phoneme adversarial examples by slightly modifying Equation 1.
The objective of PAT can be formulated as follows:

min
θ

E(x,y)∼D
[
max

δ
Lctc(T (x) + δ, y, θ)

]
s.t.||δ||∞ ≤ ϵ,

(2)

where ϵ is the magnitude of the perturbation, PAT finds the failure
case, i.e., T (x) + δ in phoneme space.

3.3. WavAugment Guided Phoneme Adversarial Training

For improving the generalization of ASR by AT, we aim
to generate adversarial examples that exhibit both stability and
diversity. Towards this end, we propose a novel WavAugment
Guided Phoneme Adversarial Training (WAPAT) method.

Adversarial examples are typically distributed near the de-
cision boundary, and slight variations can cause them to lose
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Algorithm 1: Pseudo code of WAPAT

Input: Speech tokenizer T ; A sampled mini-batch of clean
audios x with labels y; Perturbation size ϵ.

Output: Learned network parameter θ
1: Fix the network parameters of T
2: for each training steps do
3: z ← T (x)
4: z ← U(B∞

ϵ (z)) //Initialize adversarial example
5: za ← T (DA(x))
6: η, ηa ← ∇zLctc(z, y, θ),∇zLctc(T (za, y, θ)
7: δ ← ∇z[Lctc(z, y, θ) + Lwag(z + η, za + ηa, θ)]
8: ẑ ← ∏

B∞
ϵ (z)

(z + δ) //Generate adversarial examples

9: Update model parameter on Lctc(ẑ, y, θ)
10: end for

their adversarial nature [24]. Therefore, enhancing the stability
of adversarial examples is beneficial for obtaining more robust
features. To tackle the instability problem, we introduce the
WavAugment guided term along with the CTC loss to form
a new objective function during the generation of adversarial
examples.

The WavAugment operation, denoted as DA(·), applies
time-domain data augmentation to an audio sample. We repre-
sent the phoneme representation of the original sample and the
augmented sample as z and za, respectively. Then, the perturba-
tions generated for the two samples are denoted as η and ηa. The
loss WavAugment guided term encourages the predictions of the
adversarial examples of the original and augmented samples to
be similar. Formally, the objective function can be written as:
Lwag(z + η, za + ηa, θ)=−DKL [p(z + η, θ)||p(za + ηa, θ)]

z =T (x), za = T (DA(x)) (3)
where p(x|θ) is the joint probability and DKL is the KL-
divergence. From an optimization perspective, the WavAugment
guided term helps in avoiding local optima during the perturba-
tion generation process, leading to the creation of more stable
and robust features for ASR models.

In this paper, the basic data augmentations of WavAug-
ment [16] is reserved, including pitch modification (pitch),
additive noise (add), band reject filtering (band rej), time
masking (time mask) and reverberation (reverb). pitch
and add are intended to simulate variations in the speaker’s
voice and environmental noise. band rej and time mask
augmentations can introduce noise into the neural representation
of speech, which can help the model learn to better handle noisy
speech. The reverb simulates the effect of sound reflections
in a room, which can help the model learn to better handle the
effects of reverberation in real-world environments. Here, we
use gpuRIR [25] to obtain acoustic room impulse responses.

To enhance the diversity of adversarial examples, we utilize
all of the augmentations available in WavAugment to guide the
generation process. During training, one of the transformations
from WavAugment is applied to each batch of samples. In Fig-
ure 1, we show an example of log mel spectrograms augmented
with different transformations. Further details regarding the WA-
PAT can be found in Algorithm 1. Given a SpeechLM based
speech recognition model, the speech transformer T first yields
a higher level phoneme representation z from speech input. The
WavAugment guided perturbation δ can be obtained by comput-
ing the gradient of z towards maximizing the Lctc and Lwag .
For clarity, B∞

ϵ (z) := {z′ : ||z′ − z||∞ ≤ ϵ} defines a ball
of radius ϵ around z in the l∞ norm. The symbol U denotes

the uniform distribution, and
∏

denotes a projection function.
Finally, the adversarial example ẑ is fed into models for training.

4. Experiment
Datasets and Settings We conducted experiments on the
ESB [18] benchmark to evaluate cross-domain ASR robustness.
ESB comprises eight datasets with a broad range of domains,
acoustic conditions, speaker styles, and transcription require-
ments. Notably, Librispeech [26] and Common Voice [27]
only contain narrated style speeches, while VoxPopuli [28] and
TED-LIUM [29] have oratory style speeches, and AMI [30]
contains spontaneous style speeches. GigaSpeech [31], SPGIS-
peech [32], and Earnings-22 [33] cover two different styles of
speeches. Additionally, We included the optional CHiME-4 [34]
dataset with narrated style to test generalization. We use the
standard split of the above datasets and unify the transcription
format as normalised. We finetune the SpeechLM-P model1 on
the Librispeech-100h dataset, which is pre-trained on both the
LibriSpeech-960h audio and the LibriSpeechLM corpus2. And
we evaluate the robustness on datasets in ESB. Audio format is
16-bit WAV with 16 kHz, and transcription format is unified into
the normalized form.

Implementation Details The hyper-parameters used in WavAug-
ment are as follows: pitch randomly modifies the pitch of the
waveform by n ∈ [−300, 300] semitones. add randomly adds
noise from MUSAN [35] dataset with a scaled signal-to-noise
ratio between [0, 40]. The maximal width of the rejected spec-
trum in band rej is 150 Hz. The time mask operation zeros
out ten random subsequences of the inputs with a maximum
length of 2000 ms. The room dimensions and other parameters
in reverb are randomly sampled within default ranges 2.

We evaluate the accuracy of our predictions against target
transcriptions using the word error rate (WER). The ESB score
is the macro-averaged value of datasets in the ESB benchmark,
excluding Librispeech. We implement WAPAT on the pre-trained
SpeechLM-P [17], which consists of a Speech Transformer, a
Shared Transformer and a CTC head. By default, we refer
SpeechLM-P-Base to SpeechLM in all tables and figures. Mod-
els are optimized by Adam with a maximum learning rate of
1e-5 and a tri-stage learning rate schedule with the warming-up,
holding, and decay periods of [0.1, 0.4, 0.5]. We train the models
for a total of 30K steps with a batch size of 800 seconds. Pertur-
bations are bounded with an l∞-norm of 0.01. All experiments
are conducted on four NVIDIA Tesla A100.

4.1. Overall Performance

To demonstrate the effectiveness of WAPAT, we first com-
pared it with data augmentation and adversarial training methods.
We make a fair comparison with standard WavAugment [10] and
SpecAugment [10]. Although SpecAugment performs well on
Librispeech test datasets, it shows poor performance in terms
of robustness on ESB. In addition, WavAugment has the subop-
timal performance of robustness, with an ESB score of 34.18.
Notably, our WAPAT achieves superior performance compared
to the above data augmentation methods on both in-domain
and out-of-domain datasets by a large margin. Compared with
the waveform space AT method AdvEx [20], WAPAT achieves
10.01% improvement in ESB score. This further verifies the

1https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
2https://github.com/DavidDiazGuerra/gpuRIR
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Table 1: WER comparison on the ESB benchmark over various methods for enhancing the robustness of ASR. Best performances are
highlighted in bold.

Method Librispeech Chime-4 Common Voice VoxPopuli TED-LIUM GigaSpeech SPGISpeech Earnings-22 AMI ESB scoretest-clean test-other

SpecAugment [10] 3.32 7.34 45.49 38.46 36.47 19.03 24.57 20.10 51.10 45.02 36.19
WavAugment [16] 3.34 7.35 35.65 38.16 36.64 18.12 25.53 18.99 52.79 46.10 34.18
AdvEx [20] 3.36 7.36 46.10 38.35 36.74 18.18 24.49 19.36 52.01 44.79 36.24
DEMUCS [22] 3.33 7.29 33.57 43.63 36.71 18.31 24.39 26.24 56.76 44.63 35.32
WAPAT 3.32 7.28 32.68 36.43 36.38 18.12 24.25 18.40 49.78 44.53 32.58

Figure 2: Comparison of the WER improvement on ESB benchmark, including Earnings-22 (E), CHiME-4 (C), AMI (A), Common Voice
(CV), VoxPopuli (V), GigaSpeech(G), SPGISpeech (S) and TED-LIUM (T) dataset. The last column is the ESB score.

Table 2: Ablation study of the proposed WAPAT on cross-domain
datasets, (a) is different adversarial training variant, (b) is mag-
nitude ϵ.

Method Librispeech ESB Scoretest-clean test-other

(a) NO-AT 3.34 7.38 36.47
w/ PHONEME AT 3.32 7.34 35.18
w/ WAVAUGMENT PAT 3.32 7.28 32.58

(b) WAPAT
ϵ = 0.005 3.32 7.35 34.42
ϵ = 0.01 3.32 7.28 32.58
ϵ = 0.015 3.32 7.31 33.24

strengths of our proposed WAPAT in terms of generalization on
the phoneme space. Interestingly, WAPAT shows obvious advan-
tages on Chime-4 and Common Voice datasets, which share the
same speaking style (Narrated) as the LibriSpeech set. To pro-
vide a more comprehensive evaluation, we test the SpeechLM
with the speech enhancement-based method DEMUCS [22].
With sacrificing of some computational efficiency, DEMUCS
achieves good performance on generalization, however, still
inferior to our method.

4.2. Discussion

We further explore the impact of individual techniques in
WavAugment and their combinations with WAPAT on the per-
formance of the model, as shown in Figure 2. Specifically,
we report the percentage of WER reduction for both standard
WavAugment and our WAPAT, compared to the baseline model.

It can be seen that WavAugment is a useful technique for
improving the robustness of models. However, there are cases
where the individual augmentation perform worse than the base-
line on certain datasets. For example, time mask increases
the WER on the TED-LIUM dataset. Furthermore, we note that
with the same transformation, the WER reduction of WAPAT is
greater than that of WavAugment. Additionally, for all trans-
formations, there are some oscillations in WavAugment while
WAPAT is consistently increased compared to the baseline. The
results accords with the expected that phoneme adversarial train-
ing with WavAugment guidance constrains stable optimization
of adversaries, resulting in better generalization.

4.3. Ablation Study

As shown in Table 2, to better understand the function of
each component of WAPAT, ablation studies are performed and
expected to answer the following questions.

How effective is the PAT? Echoing (a) in Table 2, SpeechLM–P
with proposed phoneme adversarial training (PHONEME AT) can
achieve the better performance on in-domain and out-of-domain
datasets than baseline (NO-AT). It indicates adversarially altered
phoneme perturbations are much closer to the clean distribu-
tion, while strengthen the robustness by capturing more robust
features.

Is WAPAT superior than PAT? With WAVAUGMENT PAT
means that PAT is guided by the WavAugment, i.e., proposed
WAPAT. The ESB score of WAPAT has decreased by roughly
7.4% when compared to PAT. It is evident that WavAugment
guidance AT indeed aids in finding stronger robust features.

Does the choice of magnitude ϵ matter? We present the WAPAT
results with different magnitude ϵ in Table 2 (b). ϵ = 0 means
the standard training of SpeechLM (NO-AT), which makes the
models have the worst performance on clean WER and robust-
ness. With the increase of ϵ to 0.01, there is a drop of both
clean WER and ESB score. Moreover, we find the clean WER
of target model has the lower sensibility on ϵ. But with the ϵ
becoming larger, AT greatly damages the generalization, e.g.,
with ϵ = 0.015, ESB score increases to 33.24. This finding is
also revealed by [36].

5. Conclusions and Limitations

In this paper, we propose a novel WavAugment Guided
Phoneme Adversarial Training (WAPAT) method, to enhance
the cross-domain generalization of ASR systems. WAPAT uti-
lizes the phoneme representation of augmented audios to guide
the generation of adversarial examples, resulting in consistently
stronger generalization on multiple datasets without sacrificing
clean performance. Our experiments demonstrate that WAPAT
achieves state-of-the-art robustness on challenging ESB bench-
mark. However, WAPAT still costs increased training time, this
limitation also holds for any adversarial training. This limitation
is remained as the future optimization direction.
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