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Abstract
The main purpose of this work is to create a comprehensive
audio testset that can be used to evaluate custom keyword spot-
ting (KWS) models and to benchmark different KWS solutions.
We also propose a set of requirements that should be followed
while creating testsets to evaluate custom KWS models. We
consider multiple versions of the problem: text and audio-based
keyword spotting, as well as offline and online (streaming)
modes. Our testset named MOCKS is based on LibriSpeech
and Mozilla Common Voice datasets. We used automatically
generated alignments to extract parts of the recordings, which
were split into keywords and test samples. The resulting testset
contains almost 50,000 keywords. It contains audio data in En-
glish, French, German, Italian, and Spanish, but can be easily
extended to other languages. MOCKS has been made publicly
available to the research community. Initial KWS experiments
run on MOCKS suggest that it can serve as a challenging testset
for future research.
Index Terms: keyword spotting, custom keyword spotting,
query-by-text, query-by-example, corpus design, multilingual
audio corpus

1. Introduction
Voice interaction with electronic devices has become a standard
for various tasks replacing keyboards. The most important ex-
amples where such type of interaction is useful are intelligent
assistants. At the beginning of this revolution, each conversa-
tion would start with a dedicated button (push-to-talk solution),
but soon the hands-free option was introduced. Currently, all
leading intelligent assistants use keyword detection for conver-
sation initialization. This task involves deciding whether an au-
dio recording contains a speech signal similar enough to a key-
word (text or audio). The problem of keyword spotting comes
in two flavors:

1. custom keyword is provided by text (in literature: query-by-
text keyword spotting or QbyT KWS for short),

2. custom keyword is provided by audio (in literature: query-
by-example keyword spotting or QbyE KWS for short).

Throughout this paper, KWS will mean both QbyT KWS
and QbyE KWS tasks. Various attempts to solve KWS have
been proposed. Unfortunately, many of the solutions were
evaluated on the proprietary testsets, making a comparison be-
tween models impossible. There is only a small number of
public testsets that can be used to evaluate KWS models, such
as [1, 2, 3, 4]. However, those testsets do not allow for an in-
depth evaluation of the models since they contain a limited num-
ber of keywords and they lack challenging negative examples of
keywords.

In this paper, we describe our attempt to fill in this gap by
proposing a public testset built upon data from LibriSpeech [5]
and Mozilla Common Voice (MCV) [6]. We named it MOCKS:
Multilingual Open Custom Keyword Spotting Testset, and we
made it freely available at https://huggingface.co/
datasets/voiceintelligenceresearch/MOCKS.
Therefore, we believe that such a testset can become an effec-
tive tool when evaluating or benchmarking KWS algorithms.

The rest of this paper is organized as follows. In Section 2,
we describe a selection of the solutions to the custom keyword
spotting problem and the available testsets. In Section 3, we de-
scribe the requirements which should be followed during corpus
preparation. In Section 4, we provide a detailed description of
our corpus. We also present baseline evaluation results in Sec-
tion 5. Finally, we summarize our paper in Section 6.

2. Related work
Both versions of KWS tasks, text-based and audio-based, have
been approached before. A review of the solutions to QbyT
KWS, accompanied by a list of testsets used, can be found
in [7]. It should be noted that the most common approach to
QbyT KWS is training a neural network with an output layer
size equal to the number of keywords in the testset extended by
special classes to mark the negative examples [8, 9, 10]. Such
models cannot be treated as solutions to the custom keyword
spotting problem, even if the testset size is large.

Many KWS solutions were tested using the Google Speech
Commands (GSC) testset1. It was released in two versions:
V1 and V2, containing recordings of 30 and 35 words, respec-
tively. Ten words were treated as positive samples (keyword),
and the remaining part was used as negative samples (non-
keyword). The words were short enough to fit in the recording
lasting under one second. The GSC testset contained crowd-
sourced recordings from 1881 speakers (V1) and 2618 speak-
ers (V2). Several studies reported their results evaluated on
V1 [8, 11, 12, 13], while the others on V2 [8, 13, 14, 15]. The
best results so far have been reported by [8] with an accuracy of
98.0% on V1 and 98.7% on V2.

Despite its popularity, the GSC testset was not able to evalu-
ate KWS solutions thoroughly due to several reasons: the num-
ber of keywords was relatively low, and the negative samples
were entirely different from the keywords. All the samples were
recorded without background noise and were cut with high pre-
cision. Those issues make GSC inadequate for emulating real
production conditions.

The Multilingual Spoken Words Corpus (MSWC) [16]
contains as many as 23 M keywords split between 50 lan-

1P. Warden, “Speech commands: A dataset for limited vocabulary
speech recognition,” 2018. Available: https://arxiv.org/abs/1804.03209
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guages. Alignments generated with Montreal Forced Aligner
(MFA) [17] were used to extract audio samples. The keywords
were selected based on the word length (minimum three letters)
and occurrence frequency (minimum five occurrences per lan-
guage subset). The data was split between train, dev, and test
subsets. Unfortunately, this dataset does not contain keywords
longer than one word. What is more, it does not provide nega-
tive samples to a given keyword, which would allow for a false
positive (FP) rate analysis.

MCV contains subsets of short phrases called “Single Word
Target Segment”, which could be used for KWS evaluation.
This approach was applied in [18]. However, those subsets
are also very limited, since they contain only up to 14 short
keywords (digits and four predefined keywords). Furthermore,
there are no negative samples defined for each keyword.

A few papers used modifications of datasets available in
the public domain to evaluate proposed solutions. One example
is [19], where LibriSpeech was the base for creating the test-
set. Alignments generated with MFA were used to extract au-
dio samples. The testset contained recordings 0.5 s–1.5 s long,
including n-grams with n ≤ 4. This gave 6047 different key-
words. Positive samples were combined with two types of nega-
tive samples: “confusing” (phonetically similar to the keyword)
and “non-confusing” (phonetically dissimilar). Phoneme-level
transcriptions and edit distances were used to select both types
of negative samples. Even though the description of the testset
was fairly precise, the testset itself has not been published.

In [20], a KWS solution based on triplet loss was evaluated;
apart from GSC, the test suite included recordings extracted
from LibriSpeech. Different testsets were created using 10, 100,
1000, and 10,000 most popular words. Forced alignments were
used to extract selected phrases. Since the most popular words
were “the”, “and”, “of”, etc., the audio excerpts were relatively
short (0.03 s–2.8 s). Unfortunately, no information about the
sizes of the classes in the testset was given, nor has the testset
been published.

The GSC testset, excerpts from LibriSpeech based on
alignements generated by MFA, and subsets of MCV were used
in [18]. In this case, the testset was built with n-grams (n ≤ 5)
that contained at least 10 characters and had at least 10 occur-
rences in the train split of the dataset. This gave over 15.2 k dif-
ferent keywords. Unfortunately, this testset has not been made
public, either.

3. Requirements for an optimal custom
keyword testset

Analysis of the previous work on KWS shows that the test-
sets used to evaluate models suffered from several flaws, e.g.,
a small number of keywords, keywords being very short, only
positive samples available, negative samples not challenging, or
testsets designed solely for offline evaluation. To create a test-
set free from these drawbacks, we first defined a set of require-
ments that, in our opinion, should be followed when building
an optimal KWS testset. These requirements are presented be-
low, alongside their justification. Any parametric values were
set heuristically during initial experiments.

1. Keywords should be selected among phrases with the
phonetic transcription length p such that 6 ≤ p ≤ 16.
Production KWS systems usually have preset requirements
for the length of a keyword. Shorter phrases might result
in a high FP rate, since usually they are similar to many
other phrases, or might be contained in longer phrases. On

the other hand, long keywords are impractical for the user.
Furthermore, KWS systems are usually deployed on devices
with limited computing power, hence the requirement to re-
strain keyword length.

2. The testset should contain positive and negative samples
for each keyword. Testing with positive data is not enough,
as KWS solutions should also minimize FP rates. Further-
more, the negative samples should be varied and challenging.

3. Similarity between phrases should be measured with nor-
malized phonetic Levenshtein distance, which proved to be
successful in other studies, such as [19]. It allows us to de-
cide which phrases are similar or different and, consequently,
find which phrases are difficult to distinguish.

4. Keywords should be selected among the words with at
least two occurrences. This requirement assures that in the
QbyE KWS task, each keyword will have at least two test
cases consisting of pairs of samples in the positive part.

5. Positive samples for each keyword should, of course, con-
tain phrases having exactly the same phonetic transcrip-
tions, to measure the true positive (TP) ratio.

6. Negative samples for each keyword should contain:

• Recordings containing “similar phrases”, i.e., the pho-
netic distance between the keyword and the tested
phrase is in the interval (0.0, 0.5). These samples should
be the most challenging for the model since they would be
pronounced similarly to the given keyword.

• Recordings containing “different phrases”, i.e., the
phonetic distance between the keyword and the tested
phrase is in the interval [0.5,∞). The goal of this type
of recording is to ensure a low FP rate on the general types
of speech.

7. The testset should allow for evaluating performance in
noisy conditions and in online mode. Production systems
usually work in a challenging environment with different
types of background noise. Additionally, keyword spotters
most often work in streaming mode. Some solutions assume
non-streaming mode, but they receive recordings processed
by end-point detectors, which do not work perfectly, either.

4. Proposed MOCKS testset
4.1. Source audio data

Producing and validating new audio data is usually a very ex-
pensive and time-consuming process. However, there are nu-
merous datasets that are large and varied enough to select sub-
sets of data for tasks other than speech recognition. For this
purpose, we used LibriSpeech and MCV corpora.

4.1.1. LibriSpeech

LibriSpeech has become a standard dataset for speech process-
ing tasks, mostly due to its size (960 h) as well as the variety
of speakers and vocabulary. However, the recordings in this
dataset are very particular since they are extracted from English
audiobooks read by professional speakers, and each audio sam-
ple contains a single sentence. The vocabulary is specific, and
the average length of the recording is larger when compared
to other datasets (7.42 s in test-clean, 6.54 s in test-other and
4.94 s–5.33 s in MCV, depending on the language). However,
its large vocabulary makes LibriSpeech a good candidate for a
custom keyword spotting testset when one extracts only short
parts of the recordings. In MOCKS, we used data extracted
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Table 1: Properties of MOCKS subsets based on LibriSpeech and MCV

Property en LS clean en LS other de MCV en MCV es MCV fr MCV it MCV

# Keywords 6883 6918 6581 6534 7694 5540 8062
# Total positive 97924 115334 159890 105126 195246 101764 208626
# Total similar 195360 200350 182305 178747 271258 166338 266288
# Total different 208760 215200 204820 201840 275460 175540 275360

Offline min. len. [s] 0.23 0.35 0.33 0.34 0.24 0.32 0.34
Offline avg. len. [s] 0.80 0.79 0.83 0.89 0.80 0.86 0.90
Offline max. len. [s] 2.54 4.54 5.65 6.20 2.86 2.82 4.06

Online min. len. [s] 1.28 1.31 1.00 0.72 1.11 0.99 1.01
Online avg. len. [s] 2.89 2.87 2.82 2.87 2.75 2.80 3.08
Online max. len. [s] 5.72 6.88 8.48 9.20 7.54 6.60 7.59

from test-clean and test-other splits. We will refer to the result-
ing testsets as en LS clean and en LS other, respectively.

4.1.2. MCV

MCV is another large dataset available in the public domain. It
is based on crowdsourcing and offers a high number of anno-
tated recordings in multiple languages. To prepare our MOCKS
testset, we used Version 12.0 of the dataset. We decided to focus
on five languages commonly used in Europe: English, German,
Spanish, French, and Italian. We will refer to the resulting test-
sts as en MCV, de MCV, es MCV, fr MCV and it MCV.

4.2. Creation of our testset

We used an internally-developed, rule-based grapheme-to-
phoneme (G2P) algorithm to prepare phonetic transcriptions for
each sample. Even though numerous phrases contained mul-
tiple variants of such transcriptions, we decided to use those
which were the most popular to reduce the number of compared
phrases. In this case, their popularity was assessed by language
experts.

The datasets designed for speech recognition tasks usu-
ally contain phrases with phonetic transcriptions that are much
longer than the upper bound in our requirements. To increase
the number of potential keywords, we decided to use selected
fragments of all phrases contained in the processed datasets.
We used word-level alignments generated by MFA and models
available in the public domain2 to extract audio data containing
keywords. For each keyword, “similar phrases” and “different
phrases” were selected so that they would not contain the key-
word as a subphrase.

While creating “similar phrases” sets, we decided to use
no more than 10 phrases phonetically closest to the given key-
word. In case many phrases had the same phonetic distance,
random selection was performed. For each phrase, the “differ-
ent phrases” set contains 10 randomly selected recordings of the
types described in the requirements above.

Our testset contains two versions of the audio samples: on-
line and offline. For the offline version, we used MFA-generated
timestamps with additional 0.1 s at the beginning and end of
the extracted audio sample in order to mitigate the cut-speech
effect in the keywords. For the online version, we used MFA-
generated timestamps with additional 1 s or so at the beginning
and end of the extracted audio sample. The additional amount

2https://mfa-models.readthedocs.io/en/latest/
acoustic/index.html

of audio data might be smaller than 1 s if the keyword appeared
at the beginning or end of the recording. If the keyword was
surrounded by other words, the amount of additional audio data
might be larger than 1 s, since the cut was performed on the
nearest aligned timestamp beyond 1 s. The online version of
the testset contains timestamps of the keywords.

The final step of the testset preparation procedure consisted
of manual checking of the transcriptions in order to exclude ob-
viously incorrect samples.

4.3. MOCKS description and analysis

Below we describe in more detail the contents of MOCKS.
In Table 1, several basic statistics on its subsets are presented,
such as:
• # Keywords – number of keywords,
• # Total positive/similar/different – number of pairs in “pos-

itive/similar/different phrases” subsets,
• Offline/Online Min. len. [s] – minimum keyword recording

length in offline and online scenarios,
• Offline/Online Avg. len. [s] – average keyword recording

length in offline and online scenarios,
• Offline/Online Max. len. [s] – maximum keyword recording

length in offline and online scenarios.
Using the requirements described in Section 3, we obtained

5000–8000 keywords for each subset. Analysis of the keywords
lengths is presented in Figure 1. Most of the keywords are short:
in each subset, the keywords with 6 or 7 phonemes consti-
tute approximately half of all the keywords; hence the average
length of the recording in the offline scenario is under 1 s. The
shortest recordings in the online scenario also have the length
under 1 s, which is caused by the fact that the whole recording
for the selected keyword was that short. Since test-other and
MCV already contain data in challenging acoustic conditions,
we decided not to mix the data with additional noise.

Both en LS clean and en LS other splits are balanced re-
garding speaker gender distribution. However, the original
MCV datasets do not have this property: in most of the con-
sidered languages, nearly 60% of the samples are marked as
“male”, 8%–23% are marked as “female” and less than 2% of
the samples are marked as “other”; there is also a large number
of samples with unspecified gender (see Figure 2). To remedy
this issue, we randomly drew 2,500 “female” and 2,500 “male”
samples for each language to generate keywords.

The data is stored in a 16-bit, single-channel WAV format.
16 kHz sampling rate is used for en LS clean and en LS other,
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while 48 kHz for en MCV, de MCV, es MCV, fr MCV and
it MCV. This difference is a result of the source datasets’ sam-
pling rates. Each testset split contains approximately 500 k test
cases, which can be difficult to process, so we also add a subset
of MOCKS to allow faster evaluations. Those subsets contain
20 k test cases in each scenario, and each testset split.

5. Initial experiments with MOCKS
To estimate the utility of the proposed testset, we evaluated a
baseline model for the QbyE KWS offline task. Our model was
based on the solution described in [21]. It consisted of an en-
coder with 6 bidirectional LSTM layers with 124 cells each, and
a linear layer generating 320-dimensional embeddings for au-
dio data. The total number of trainable parameters was 2 M. We
pre-trained the encoder model as a part of the Listen, Attend,
Spell model [22] on the ASR task using all trainsets from Lib-
riSpeech. Next, we appended the output layer to the pre-trained
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Figure 3: DET curve for MOCKS compared to GSC testset

encoder and fine-tuned it for 20 epochs using the contrastive
loss function. The dataset in KWS fine-tuning step consisted
of recordings generated by an in-house Text-To-Speech solu-
tion from approximately 400 English keywords not included
in MOCKS. During inference, the Euclidean distance between
keyword and test sample embeddings was calculated and com-
pared with a preset threshold. We did not perform any hyperpa-
rameter fine-tuning.

In order to compare the results obtained on MOCKS and
on previously available testsets, we decided to use GSC, even
though it was not prepared for the QbyE task. For each keyword
recording in the GSC testset we randomly selected 100 sam-
ples with the same phrase, 100 samples with a different phrase,
and 100 samples from the “Silence” class. There were approxi-
mately 400 k test cases in each of those subsets.

Figure 3 shows the DET curves for GSC and MOCKS test-
sets. The DET curve for MOCKS was prepared after merging
all the subsets of this testset. It should be noted that even though
the model performed relatively well on GSC, the results were
much worse on MOCKS. This clearly shows room for improve-
ment and confirms how demanding MOCKS is. The estimated
equal error rate (EER) value for all MOCKS subsets is 41.64%
with a confidence interval of ±0.15% (at a 95% confidence
level).

6. Conclusions and future work
This paper introduced the Multilingual Open Custom Keyword
Spotting Testset named MOCKS. This testset aims to provide
unified means of custom keyword spotting model evaluation
and, in this way, to foster research on open vocabulary KWS
solutions. We also described a list of requirements that, in our
opinion, should be followed while creating such a testset. These
requirements can be easily applied to create new testsets in var-
ious languages based on other large vocabulary datasets. To
create such testsets, two types of additional data are required:
phonetic transcriptions and word-level alignment.

In the future, we plan to extend our testset with additional
languages contained in MCV and other public datasets. We
also plan to work on preparing train and dev sets based on Lib-
riSpeech and MCV.
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