INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

Dual Memory Fusion for Multimodal Speech Emotion Recognition

Darshana Priyasad, Tharindu Fernando, Sridha Sridharan, Simon Denman, Clinton Fookes

Signal Processing, Al and Vision Technologies (SAIVT), Queensland Univeristy of Technology,
Brisbane, Australia

{dp.don, t.warnakulasuriya, s.sridharan, s.denman, c.fookes}@qut.edu.au

Abstract

Deep learning has been widely used in multi-modal Speech
Emotion Recognition (SER) to learn sentiment-related features
by aggregating representations from multiple modes. However,
most SOTA methods use attentive fusion or late fusion of data
which ignores the possibility of long-term dependencies among
data. In this study, we propose a transformer-based SER ar-
chitecture that fuses modality representations through explicit
memory modules, where the information from current inputs
is integrated with historical information allowing the model to
understand the relative importance of modes over time. We
have used Wav2Vec2 and BERT models to extract audio and
text features which are then fused together by aggregating fea-
tures from individual modes with information stored in memory,
followed by downstream classification. Following state-of-the-
art methods, we evaluate our proposed method on the IEMO-
CAP dataset and results indicate that memory-based fusion can
achieve substantial improvements.

Index Terms: emotion recognition, memory networks, multi-
modal fusion, multi-task learning

1. Introduction

Over the past several years, Speech Emotion Recognition (SER)
has evolved into an integral component of Human-Computer
Interaction (HCI) systems, facilitating natural interactions with
machines [1, 2, 3]. Human intentions are often expressed
through verbal and non-verbal cues [4], which are captured by
SER and HCI systems to precisely identify emotions, and trig-
ger accurate feedback. However, the characteristics of human
emotional responses vary from one person to the next due to
personality and the level of stimuli [5], which makes subject-
independent emotion analysis challenging. Furthermore, hu-
man emotional responses are often expressed through multiple
traits such as speech, facial attributes and spoken language, thus
multimodal approaches are also commonly used along with uni-
modal approaches in intelligent systems.

Existing SER and HCI systems have employed deep learn-
ing over conventional machine learning approaches due to deep
learning’s robustness, its ability to self-engineer features, and its
superior performance [6, 7, 8]. However, deep learning requires
larger datasets to achieve generalizability, which makes emotion
recognition a challenge due to the smaller datasets available [9],
resulting in the widespread use of transfer learning. The major-
ity of recent applications use CNNs (i.e SincNet [10, 11]) and
transformers (i.e. Wav2Vec2 [12, 13]) to learn robust-features
for acoustic emotion recognition from raw waveforms. Sev-
eral applications have aggregated multi-level acoustic informa-
tion captured through spectrograms and MFCCs together with
the unprocessed audio to exploit complementary information to

improve performance [14]. However, audio transformers have
revolutionized SER as it eliminates the need for recurrent con-
nections and convolutions, simultaneously yielding better rep-
resentations and higher performance [7, 13]. Similarly, NLP-
based transformer models such as BERT [15] are widely used
to capture language representations from transcripts for emotion
classification [16, 17, 18, 19].

Compared to uni-modal approaches discussed above, multi-
modal deep learning aggregates emotion traits from multiple
sources together to improve overall performance by exploiting
complementary information in heterogeneous data [11, 20, 21].
However, fusion doesn’t guarantee increased performance, and
thus needs to be carefully designed. Different fusion strategies
including early and late fusion are often incorporated in litera-
ture to enhance the performance of SER systems [16, 22, 23].
Attention is often used along with multi-modal fusion to direct
the network towards salient features that maximise the overall
objective in a flexible manner [11, 14], and different variations
of attention such as self-attention [24], co-attention [14] and
cross-attention [11] have been widely used in SER. The notion
of historical context in multi-modal fusion has also been applied
to learn relationships and dependencies among data modalities
[25, 26]. However, most of these methods (i.e. LSTMs) fail to
capture long-term dependencies among modalities, and as a so-
lution explicit memory networks can be incorporated in fusion
[27, 28, 29].

Even though significant advances have been made in multi-
modal SER, the applicability of memory networks for modality
fusion is not well explored [30]. We argue that the performance
of SER systems can be improved by capturing relationships and
dependencies among training data which can be incorporated
during inference. In this paper, we present a novel memory-
based fusion approach for SER (with audio and text modalities)
which effectively stores historic information in explicit mem-
ory, and aggregates historic knowledge with current input data
to improve recognition performance. Using both audio speech
and the correspondingly transcribed text for emotion recogni-
tion has been investigated by several researchers [6, 16] since
these two modalities carry complementary information. Exper-
iments were conducted on the IEMOCAP dataset [9] to enable
fair comparisons with state-of-the-art methods and substantial
performance improvement is achieved in terms of recognition
accuracy.

2. Methodology

In this paper, we present a novel fusion framework for multi-
modal SER using memory networks to boost performance over
conventional naive fusion. The proposed fusion mechanism is
capable of learning long-term dependencies and relationships
among data during training, and this knowledge is used to im-
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prove performance during inference. Figure 1 illustrates the
high-level architecture of the proposed model. The network
takes two inputs, an audio sample and the corresponding text,
which are passed through separate transfer-learned encoders to
obtain low-dimensional embeddings. The resultant embeddings
are passed through the proposed memory fusion module, and
the output of the memory is fed to the classification head. A
detailed description of the architecture and its configuration is
given in Sections 2.1, 2.2 and 2.3.

2.1. Transformer-based Encoder Network

In the proposed approach, we have used audio and text modal-
ities for SER. Due to the limited availability of large public
datasets for emotion recognition, we have used transformer net-
works and transfer learning to extract robust latent features from
input data, where a Wav2Vec2 [12] model with the SUPERB
configuration [31] is used as the audio encoder (pre-trained for
speaker id), and a BERT [15] model is used as the text en-
coder. In both transformer architectures, we have used the se-
quence classification variant of both architectures. First, we pre-
process each audio sample and its corresponding text sample
using the feature extractor and tokenizer associated with each
encoder. We have selected 5s long audio segments sampled at
16000 H z from the beginning of the audio sample, and 30 to-
kens from each text sample as inputs to the encoders. Due to
the higher computational cost associated with transformer net-
works, we have used the “base” architecture that contains only
12 stacked transformers for both Wav2Vec2 and BERT. The en-
coder networks were trained (fine-tuned) end-to-end with the
memory module and the classification heads, keeping only the
“feature_extractor” (Wav2Vec2) and “embedding” (BERT) lay-
ers frozen.

2.2. Multi-Modal Neural Memory Fusion

The proposed neural memory-based fusion layer consists of two
explicit memory blocks (M, € R™ X e and M, € R™ X &
where n and d represents the number of memory slots and mem-
ory dimension that capture audio and text memory respectively)
and three sub-modules termed the reader, composer and writer,
which carry out memory operations as illustrated in Figure 2.
The number of memory slots in both memory modules was
fixed at 120 (nq=n:=120), and the memory dimension was set
at 768 (dq=d:=768) which is the output dimension of the “base”
configuration of the encoder transformers. During initialization,
each memory is filled with values from a Xavier normal distri-
bution with a gain of 1. The proposed memory layer takes two
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Figure 1: High-level system architecture. The input audio sam-
ple and the corresponding text are passed through two sep-
arate encoder networks to generate low-dimensional embed-
dings, which are then passed through the proposed fusion mod-
ule. The fusion module outputs updated memory states and the
composed output (after fusion), and the latter is then passed
through an MLP followed by the classification.
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inputs, the audio embedding (z,) and the text embedding (x+),
and it outputs the fused output (xy) and the transformed mem-
ory states.

The embedding vectors from encoders (x, and x+) are first
passed through the reader sub-module along with the memory
blocks (M; and M; where s represents the state at a train-
ing iteration) to generate associated memory vectors, which are
later used by the composition sub-module to compose the fusion
output. However, contrary to conventional memory networks
[27, 28, 32], we use an embedding from one modality to obtain
a complementary and semantically related memory representa-
tion of the other modality through a cross-attention mechanism.

First, we pass z, and M; through the reader sub-module,
and these are multiplied together to generate the vector Zimp
(Temp= Ta X M{). Unlike conventional self-attention where
a softmax (or sigmoid) activation is used to calculate the at-
tention weights, we use a Gumbel softmax activation [33] due
to its ability to manipulate the distribution of attention weights
ranging from a one-hot to uniform weighting, by adjusting the
temperature (7). We calculate 7¢ by passing Zimp through a
fully connected layer (with W, € R'*% and b, as weight
and bias respectively) which is trained along with the network.
We limit 7; to be between le™* and Tmas (fixed at 10) by tak-
ing the absolute value and clamping. The resultant temperature
value is used to calculate the Gumbel-softmax weights, which
are then multiplied with z¢; to get the text memory represen-
tation from the audio embeddings (x_) as per Equations 1 and
2. Similar steps are followed to get the audio memory represen-
tation from text embeddings (x:_4) as shown in Figure 2.
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The resultant feature vectors, x;_, and x,_¢, along with the
encoded embeddings z, and x:, are then passed through the
composer sub-module where fusion occurs. We use a shared
Compact Bilinear Pooling layer (CBP) [34, 35], which offers
the discriminating abilities of bilinear pooling with fewer pa-
rameters, to fuse the embeddings of one modality with the mem-
ory representation from the other modality, as shown by Equa-
tion 3. First, we pass x, and x,+ through the CBP layer fol-
lowed by z;_, and x; (the order of audio and text is preserved
when passing through the CBP). The pooled outputs, x,_1 and
Tp.2, represent fused feature vectors with different information.
Each pooled vector is passed through a separate self-attention
layer (to identify salient information) with batch normalization.
Finally, the fusion output (x y) is obtained by averaging the fea-
ture outputs of the two normalization layers as shown in 2.

ZTp, = CBP(xa,Zat) & Tp, = CBP(Tta,z:) (3)

In the proposed approach, the writer sub-module is used to
update the memory state based on the corresponding encoder
embedding. Unlike the previous sub-modules, the operations in
the writer sub-module are carried out by considering each mini-
batch of embeddings as one feature as explained below. First,
we concatenate the current memory state M; with z, along
the zeroth axis (if the mini-batch dimension is (m, d,) and the
memory block dimension is (14, d.), the resultant feature di-
mension is (m+ng, ds)), to expand the memory with current
modality information. The resultant feature vector is then trans-
formed into a new latent space using a transformer layer which
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Figure 2: Proposed memory fusion architecture. The memory architecture contains three sub-modules: reader (brown), composer
(green) and writer (blue); and two explicit memory blocks (red), each to learn and store dependencies related to a specific modality.
The functionality of the respective sub-modules is discussed in Section 2.2. The memory takes embeddings from audio and text encoders
as inputs and outputs the fused feature vector along with new memory states, which is later used to calculate the overall loss.

learns relationships and dependencies among each vector in the
expanded memory. Since, the memory stores information from
past iterations (during training), this may learn long-term rela-
tionships among data. However, to get the number of memory
slots back to n,, we use the differentiable Top-K pooling layer
(k is set to nq) which weights and selects the k most salient fea-
ture vectors from the expanded memory. The selected k¥ mem-
ory slots are then used as the new memory state (Mjl). As
shown in Figure 2, the same operations are carried out for the
text modality, resulting in the new memory state (M; l). Even
though the new memory state is calculated during the forward
pass of the training, we assign it back to the memory variable
only at the beginning of the next iteration to avoid any insta-
bilities during back-propagation. Finally, these calculated new
memory states are used to calculate the overall loss during the
training process (see Section 2.3). However, the memory update
process is not carried out during inference to avoid the memory
storing any information from the evaluation set, and to ensure a
fair evaluation.

2.3. Classification Network and Objective Functions

The fused feature x s is passed through the classification net-
work which consists of two fully connected layers with 1024
and 512 units followed by the classification head resulting in
log-probability vector z, € RV**, where N refers to mini-

batch size. To train the writer sub-module end-to-end along
with the complete network, we have introduced a pairwise sim-
ilarity loss which seeks to achieve orthogonality among vec-
tors in the memory block while increasing the informative-
ness of the stored features. First, for M l, a similarity matrix
Sa € R™@*™a is obtained where S, (4, j) represents the cosine
similarity between the i*" and j'" memory vectors of M " The
mean cosine similarity is calculated by averaging the upper tri-
angle of the similarity matrix, excluding the diagonal which is
always 1. The loss for Mf, is calculated similarly. and then
added to the categorical cross-entropy loss calculated on z,,
obtaining the total loss (L) as per Equation 4.
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3. Experiments

3.1. Dataset and Experiment Setup

We have evaluated our proposed memory architecture for emo-
tion recognition on the IEMOCAP dataset, containing utter-
ances from 10 unique speakers divided across five recordings
sessions. We have selected samples from four basic emo-
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Table 1: Performance comparison with SOTA

Model WA UA
Isolated Gaussian Reg. [36] 69.3% 68.1%
Co-attention based Fusion [16] 69.8% 71.0%
Attentive Time-Frequency NN [1]  73.4%  64.5%
Key-Sparse Transformers [6] 74.3% 75.3%
Modality Calibration [20] 75.6%  77.6%
ResNet + BERT [37] 75.8% 76.1%
Block and Token Attention [3] 73.2%  75.2%
Speechformer++ [7] 70.5% 71.5%
Ours 76.8% 77.3%

tions: anger, sadness, happiness (samples labelled excitement
are merged with happiness as per [6]) and neutral; to be con-
sistent with the SOTA. The resultant dataset contains 5, 531 ut-
terances with 1,103, 1,636, 1,084 and 1, 708 samples repre-
senting anger, happiness, sadness and, neutral respectively. We
used a Leave-One-Session-Out (LOSO) cross-validation proto-
col for evaluations following [6]. The model was trained with an
SGD optimizer with learning rates of 0.01 (complete network)
and 0.001 (memory module). Experiments were conducted on
a high-performance computing cluster with an NVidia M40 and
T4 GPUs, 30G'B of memory, and 6 CPU cores.

3.2. Results and Analysis

A comparison of our proposed fusion method with the SOTA
are given in Table 1. The performance is evaluated using
Weighted Accuracy (WA) and Unweighted Accuracy (UA) for a
LOSO cross-validation protocol on the IEMOCAP dataset. The
proposed memory-based multi-modal fusion approach has been
able to achieve 76.8%, 77.3%, and 0.77 in terms of WA, UA
and F1-score respectively, showing a substantial improvement
over the SOTA.

Transfer learning of pre-trained transformers has been
widely used for feature encoding in SOTA methods [14, 37] due
to its ability to learn better features as opposed to training from
scratch. However, the task that the transformer is pre-trained
on can have a significant impact on the overall performance and
generalizability. Contrary to [14], which has used a Wav2Vec2
network pre-trained on speech-to-text translation, we have uti-
lized a Wav2Vec2 variant fine-tuned on speaker identification
(SUPERB setting [31]). Thus, the audio encoder can generate
embeddings that are subject-independent and carry emotional
traits which result in better generalization and performance.

Furthermore, the input data has a significant impact on what
is learnt by the network. Spectrogram-based networks can fail
to capture specific frequency bands associated with SER, or
fail to model emotion-related correlations in the frequency do-
main during model training [1]. Therefore, compared to pre-
computed features such as spectrograms and MFCCs [1, 3, 14],
deep networks can learn more robust and informative features
which helps lead to the improved performance of the proposed
method. In multi-modal SER, fusion can be carried out at dif-
ferent levels (early, intermediate or late), each of which may
learn different representations. Contrary to [37] that has used
score fusion that promotes independent learning from modali-
ties, we have used intermediate feature fusion that learns a joint
representation across both modalities. With this approach, both
the encoders learn a rich representation space by mutually ex-
ploiting complementary information, resulting in improved per-
formance.

Deep networks learn the features from input samples to
maximise the SER performance during training, but some learnt
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Figure 3: Confusion matrix for an average performing session
(Session 3) with LOSO-CV for Left : Naive Fusion, Right :
Memory Fusion

information may not be related to the expressed emotion and
may in fact be redundant, or noisy. Therefore, key-sparse
transformers [6] have been developed to remove noise and fo-
cus on emotion-related information. However, in our proposed
method, we use attention within fusion layers to focus on salient
information while utilizing the explicit memory blocks to store
task-specific information which is not redundant. Self-guided
modality calibration methods [20] have been proposed to jointly
maintain word-to-sentence dependence and uni-modal indepen-
dence. Similarly, in our proposed method, we have explicit
memory blocks to learn modality-specific long-term dependen-
cies while jointly learning multi-modal interactions through in-
termediate fusion and the downstream classification network.

For a fair analysis of the proposed memory-based fusion ar-
chitecture, we compared it with a naive fusion model with the
same configuration. In naive fusion, we simply concatenate the
feature embeddings, x, and x, while keeping the same down-
stream model and classification head. We achieved an average
WA, UA and F1 score of 74.3%, 75.2% and 0.74 respectively
which is a 2.5% drop compared to the memory fusion (see
Table 1) highlighting the superiority of the proposed memory
fusion approach. Figure 3 shows confusion matrices from the
same testing split for memory fusion and naive fusion. It is ob-
served that higher performance has been achieved with “anger”
and “sadness” which are the least represented emotions in the
dataset, highlighting the importance of the proposed memory.
The average inference time for one sample is 63 ms and 91 ms
for naive and memory fusion respectively. Furthermore, since
the fusion layer takes fixed-size inputs irrespective of the in-
put length (a transformer with the base setting always outputs
a vector of size R'*7%®), the time-complexity remains constant
making this layer scalable for longer utterances without needing
of additional computational resources.

4. Conclusion

This paper proposes a multi-modal fusion architecture for SER
using explicit memory to improve recognition performance.
This method hypotheses that substantial improvements can be
achieved by learning and incorporating long-term dependencies
among multi-modal data along with the inputs. The proposed
memory module is capable of capturing and storing relation-
ships which are aggregated together with inputs during train-
ing and inference. Furthermore, memory fusion generates a
robust and rich latent feature representation which results in
substantial performance improvements compared to naive fea-
ture fusion. Furthermore, the use of transformers that are pre-
trained on a relevant domain, i.e. speaker identification (specific
speech traits can affect persons’ way of expressing emotions),
can also have contributed to the performance improvement over
the state-of-the-art in terms of Weighted Accuracy (WA).
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