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Abstract
Automatic Speech Recognition (ASR) has seen a surge in pop-
ularity for Recurrent Neural Network Transducers (RNN-T) in
recent years and shows much promise. RNN-Ts were intro-
duced as an extension of Connectionist Temporal Classifica-
tion (CTC) models. While CTC models have prefix search
as the widely used decoding strategy, it appears to have been
overlooked in favour of other decoding strategies such as time-
synchronous decoding (TSD) and alignment-synchronous de-
coding. In this work, we introduce prefix search decoding, look-
ing at all prefixes in the decode lattice to score a candidate. We
show that our technique aligns more closely to the training ob-
jective compared to the existing strategies. We compare our
technique with the originally proposed TSD, using Librispeech
and AMI-IHM datasets. We find that while prefix search is
closer to the training objective, with larger datasets the perfor-
mance improves significantly, while with lower size datasets the
performance degrades.
Index Terms: speech recognition, rnn-transducers, prefix
search decoding

1. Introduction
Automatic Speech Recognition (ASR) has progressed from
having Gaussian Mixture Model (GMM) - Hidden Markov
Model (HMM) based systems, to DNN-HMM [1] based sys-
tems, then to fully end-to-end based systems like Connection-
ist Temporal Classification (CTC) [2] loss based networks and
recently to sequence-to-sequence networks which make use of
an encoder-decoder based auto-regressive inference approach.
RNN-T [3] is one such end-to-end based system which was
built on top of the ground-works of CTC, addressing a few
short-comings of it like conditional independence assumption
and target sequences needing to be shorter than the input se-
quence. RNN-Ts have been gaining traction in the past few
years owing to it’s competitive performance when compared to
other models.

The idea of the RNN-T training is to maximize the proba-
bility of all possible alignments of a target sequence with that
of an input sequence. The idea of creating the lattice for the
alignments and finding all possible alignments is well formu-
lated and explained in the original work. When it comes to
inferring the output sequence for a new utterance after train-
ing, there are multiple approaches, the main approach being
time-synchronous decoding. However, when compared to CTC,
which RNN-Ts were expanded from, the latter seems to be
missing the main decoding scheme used for decoding an out-
put from a CTC lattice, which is prefix-search decoding. There
have been other decoding strategies introduced like alignment-
length synchronous decoding (ALSD) [4], but we haven’t come

across any work which tries to find the most probable output
sequence by considering all possible prefixes of the sequence,
which is the very objective that the loss minimization tries to
achieve. This work aims to expand and modify prefix-search
decoding to work with RNN-T networks, as it seems to have
been overlooked as a decoding strategy. In this work, we intro-
duce and formulate this decoding strategy and compare it with
the existing TSD strategy. We investigate the advantages and
shortcomings of the proposed decoding strategy and present our
observations.

The paper is structured as follows, Section 2 discusses the
relevant literature related to this work. In Section 3 we explain
how RNN-Ts work and explain the existing TSD algorithm.
In section 4 the proposed prefix-search decoding strategy for
RNN-Ts are explained and the algorithm is presented. Section
6 explains the details on how we did all our experiments, and in
Section 7 we present our results. Finally, discussion and sum-
mary presented in Sections 8 and 9.

2. Related work

With the introduction of RNN-T in [3], the author proposes
an algorithm to get the best output sequence based on time-
synchronous beam search. This method scales to long se-
quences and targets the low computational cost by trading off
against the search accuracy. Later, people have worked on dif-
ferent strategies with the major focus being either optimization
of existing used algorithms or suggested new search algorithms.

Jain et al. [5] improved TSD by pruning out unlikely paths
during decode by comparing the scores of a set of hypotheses
present at time t and t+ 1 and improved decoding latency. Tri-
pathi et al. [6] introduces a breadth-first search algorithm in
which during the search they also try to approximate the sum-
mation for all possible alignment paths in training.

Alignment-length synchronous decoding (ALSD) [4]
chooses the best of both in time or symbol expansion and is
not constrained to search the lattice in a predefined manner like
TSD. TSD traversed the search space by making a fixed num-
ber of symbol expansions for every frame. ALSD is faster com-
pared to TSD while keeping the same accuracy. Kim et al. [7]
further tries to speed up the inference of various optimization
such as vectorization of hypotheses and pruning out the redun-
dant search space.

[8] put a very nice study comparing the available beam
search decoding strategies for the transducer networks. They
also proposed an N-step constrained (NSC) beam search by ex-
tending the idea of constraining the beam search to single label
emission plus blank label at each time step in [7].

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

4484 10.21437/Interspeech.2023-2065



3. Recurrent Neural Network Transducers
Transduction loss is an extension of CTC loss for being able
to handle any length output sequence. In CTC networks, a la-
bel sequence y of length Ty is aligned to an acoustic feature
sequence sequence x of length Tx. While CTC networks as-
sume conditional independence, RNN-T networks work by con-
ditioning on the previous tokens generated. Also, RNN-T net-
works are able to align any label sequence to any other label se-
quence, while CTC networks only the alignment of sequences,
only when Ty < Tx.

The idea of RNN-T networks is as follows. Let x =
{x1, x2, ..., xT } be an input sequence belonging to the set X ∗

over an input spaceX = Rm, the set of all real valued vectors of
dimensionm. We want to label this input sequence with an out-
put y = {y1, y2, ..., yU} belonging to the set Y∗ over an output
space Y ⊂ Z, the set of all integer sequences with any length.
The objective is to train the function f : X −→ Y satisfying all
training sample pairs of the style (x, y). The input sequence x
is generally some form of short time acoustic feature like filter-
banks, MFCCs, etc., while the output sequences are integer to-
kenized versions of the corresponding transcription. The output
space in general is a finite set of integer tokens, the size of the
vocabulary used for output text transcriptions of size K. The
output space is extended with a null token, to Ȳ = Y ∪Ø.

The input sequence x is passed through a transcription net-
work htrans with the ability to process temporal information,
such as a recurrent neural network or a transformer, which is
also referred to as the encoder. This network produces an out-
put sequence e ∈ RT×D where D is the hidden dimension
of the network. The target sequence y is passed though a pre-
diction network hpred, also a recurrent or transformer network,
also referred to as the decoder. This network produces an out-
put sequence d ∈ RU×D using only causal connections. That
is

di = f(y0, y1, ..., yi−1) (1)

A joiner network hjoin combines the outputs from the transcrip-
tion and prediction network producing a 3 dimensional lattice
p ∈ RT×U×K . A softmax is taken over the last axis for it
to be interpreted as probabilities of vocabulary tokens. pt,u,k
indicates the probability of outputting the kth token in the vo-
cabulary in the time-step t, after seeing till the uth token in the
sequence. A Ø indicates staying in the current token state with-
out generating any new tokens for the current time-step. Let
G be the function which removes Ø from a sequence. During
training, for a target sequence y, we find all possible sequences
ȳ = G−1(y) which can be accommodated in the lattice p, using
a forward-backward process and the probability of all paths are
maximized.

3.1. Time-synchronous decoding

After training has finished, decoding an input sequence for its
most probable sequence can be done in multiple ways. The
commonly used scheme is time-synchronous decoding (TSD).
In this decoding procedure, we start by providing the input fea-
tures to the transcription network and a start-of-sequence token
< sos > to the prediction network. For a beam search with
size N , we start our search procedure at time-step t = 1 and
token-step u = 1, with two sets A = {} and B = {< sos >}.
Every candidate will have its own lattice. At every time-step,
A is emptied and B is moved to A. If any candidate in A has
a proper prefix sequence in A, the probability of the prefix is
added to it. The most probable candidate in A removed, u is

updated with the number of tokens other than Ø and expanded
using its most probable token at pt,u. If the expanded token is
Ø, that candidate is moved to B, otherwise it is moved to A
and the RNN-T lattice for that candidate is expanded with the
current new token. When theN th best candidate inB has more
probability than the best candidate inA, we move on to the next
time-step and update t := t+1. The best candidate inA after T
time-steps is considered as the most probable output sequence.
If we visualize the output lattice of size T × U ×K with t in-
creasing in the right direction, u in the downwards direction and
k in the depth direction, this decode procedure scans from left
to right in the lattice from t = 1 to t = T .

3.2. Alignment-length synchronous decoding

In [4] the authors use an algorithm called Alignment-length
synchronous decoding (ALSD) which maintains the condition
that all hypotheses in the beam search at every step should have
the same number of tokens plus blank/null tokens. This is not
to be confused with our approach where the number of non-
blank tokens is kept constant at every step. While the emphasis
of ALSD is to speed up the decode procedure, our approach
merely aims to showcase a decode procedure which is more in
line with the training loss. And hence, for all experiments in
this paper, we only compare the outputs of our decode scheme
with TSD and not ALSD.

4. Prefix-search decoding (PSD)
Drawing heavy inspiration from the prefix-search procedure in
CTC-based networks, we formulate a new decoding scheme for
decoding sequences from an RNN-T network. Instead of scan-
ning the lattice in a left to right fashion in the t − axis, we
propose a decode procedure which scans the lattice in a top to
down fashion in the u− axis. In TSD, the decoding procedure
has a practically high probability to stop without any stopping
criterion at the T th time-step (that is, the beams don’t expand
infinitely in a particular time-step). But in our approach, we
scan in the direction of the u−axis, for which we do not know
the length of the sequence U prior to knowing the decoded out-
put. To account for this, we extend the output space with an
end-of-sequence token such that Ỹ = Ȳ ∪ < eos >. The
objective of prefix-search decoding is to consider all possible
prefixes of a particular candidate to account for its total proba-
bility in the lattice. That is, the probability of a search sequence
y′ = {y1, y2, ..., yu} in the lattice is the total sum of the prob-
ability of outputting y′ in all time-steps ranging from t = 0 to
t = T , in the lattice. In TSD, the prefixes are considered only if
they end up in the best candidates list, while in prefix-search de-
coding every candidate y′ is forced to retain all possible prefixes
G−1(y′) ending with yu of the candidate in the lattice. This
makes prefix-search decoding align much closer to the original
training objective than TSD, because the training objective is
to maximize the probability of all possible paths G−1(y) of a
target sequence y.

Let the first token for any sequence be < sos >, and let
y be a candidate of length v, and let the input sequence x be
of length T . Just like in the original formulation for RNN-T,
define the variable α(y)(t, u) as the probability of outputting
y[1:u] during time-steps 1to t, and let Pr(k ∈ Ỹ|t, u) be the
probability of outputting the token k from the vocabulary Ỹ at
time-step t, after only observing the sequence y[1:u] by time-
steps 1 to t.
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α(y)(t, u) = α(y)(t− 1, u) · Pr(Ø|t− 1, u)+

α(y)(t, u− 1) · Pr(yu|t, u− 1)
(2)

α(y)(t, 1) =

{
1; t = 1

0; otherwise
(3)

Then γ(y)(k, t), the probability of outputting y during time-
steps 1 to t and then outputting the token k from the vocabulary
excluding Ø, can be written as

γ(y)(k, t) = α(y)(t, v) · Pr(k|t, v) ∀k ∈ Ỹ \ {Ø} (4)

When we encounter an end-of-sequence as the expansion
token, all the prefixes have to be joined together such that the
paths end at time-step T . Now, the prefix probability of an ex-
panded candidate y + {k} can be written as

ψ(y)(k) =





∑T
t=1 γ

(y)(k, t) ; k ̸∈ {Ø, < eos >}

α(y+{<eos>})(T, v + 1) ; k =< eos >

0 ; k = Ø
(5)

Note that for the special cases when the expansion token is
Ø, we set its to probability zero, because null tokens by defi-
nition cannot move to the next token-step. In the case where
the expansion token is < eos >, the score we provide is tech-
nically the total probability of that sequence. The pseudo-code
for a beam search of size N is given in Algorithm 1.

Algorithm 1 Prefix-search decoding

ended← {}
active← {{< sos >}}
while |ended| < N or Pr(ended[N ]) < Pr(active[1]) do

n← 1
while n <= N do

y ← active[n]

Pr(y + {k}) = ψ(y)(k) ∀ k
best← N tokens with highest Pr(y + {k}).
Add (y + {k}) to active ∀k ∈ best∖ {< eos >}
if < eos >∈ best then

Add (y + {< eos >}) to ended
end if
Remove y from active
n++

end while
Sort ended in descending using Pr(y) ∀y ∈ ended
Sort active in descending using Pr(y) ∀y ∈ active

end while

5. Consequences
An unforseen consequence of doing prefix search decoding
that our experiments have shown is that PSD requires hyper-
parameter tuning in terms of the length penalty that is to be uti-
lized. Unlike TSD, PSD was observed to be more sensitive to
changes in length penalties. For a search sequence y, we rescore

the candidates every step in the decode as mentioned in [9] and
compute the adjusted probability P̃ r(y) for length penalty λ.

loge(P̃ r(y)) = loge(Pr(y)) + λ ∗ |y| (6)

6. Experimental Setup
6.1. Data Description

Experiments were conducted on the publicly available Lib-
rispeech [10] and close-talk AMI datasets [11, 12]. Librispeech
data contains the read speech from English audiobooks however
AMI dataset has meeting speech recordings. We only use close-
talk sets from AMI recorded from individual head microphones
(IHM). All the models are trained on TRAIN sets and results
are reported on DEV & EVAL sets.

Table 1: Librispeech dataset details

Type Name #Utt Hours

TRAIN train-960 281231 960

DEV dev-clean 2703 5.4
dev-other 2864 5.3

TEST test-clean 2620 5.4
test-other 2939 5.1

Table 2: AMI-IHM dataset details

Type Name #Utt Hours

TRAIN ihm-train 108221 77.89

DEV ihm-dev 13059 8.9

TEST ihm-eval 12612 8.7

6.2. Architecture

We trained an end-to-end ASR system based on Conformer
[13] architecture. Our model closely resembles Conformer (S),
which is mentioned in [13], having 10.1M parameters. It con-
sists of 16 encoders having conformer blocks and 1 LSTM de-
coder layer. Encoder and decoder hidden dimensions are 144
& 320 respectively. The kernel size for the convolution module
is 32 and attention heads are 4. We use subwords-based output
dimensions of 1024 & 256 for Librispeech and AMI datasets re-
spectively. For encoding the text into tokens, we use byte-pair
encoding [14].

We use 80-dimension fbank features input using 25ms of
window length and with 10ms of hop size. We use Specaugment
[15] as a data augmentation strategy.

6.3. Training and inference details

All models were trained with the Noam scheduler [16], with
25000 warm-up steps, a factor of 10, and weight decay of 1e−6.
Weight updates are pooled and performed every 24 steps. We
decode the model averaged over the last 15 best checkpoints,
chosen based on the RNN-T loss criteria calculated over the
DEV set. The Pytorch [17] library was used for all trainings and
no external language models were used for our experiments. For
all experiments, batch binning is used with 2M as batch bin size
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and checkpoints are saved every 5000 steps. Models were de-
coded using 12 as the beam size for all cases. The length penalty
for candidate scores were chosen with a grid search from 0.0 to
1.0 with a resolution of 0.1.

7. Results
All our experiments were carried out on the Librispeech cor-
pus and AMI-IHM data. In Table 3, the performance of TSD
is compared with that of PSD, with dev-clean, dev-other, test-
clean and test-other. Table 4 shows the same experiment carried
out on the AMI-IHM dataset, evaluated on the dev set and eval
set.

Table 3: WER(%) on Librispeech DEV & TEST sets

Search Type DEV TEST
clean other clean other

TSD 3.12 3.47 8.43 8.38
PSD (ours) 3.03 3.29 8.18 8.13

Table 4: WER(%) on AMI-IHM DEV & TEST sets

Search Type DEV TEST

TSD 23.86 23.55
PSD (ours) 24.61 24.13

8. Discussion
With experiments on train-960 set of the Librispeech corpus, we
can observe that PSD is always significantly better than TSD.
However when we look at the results of AMI-IHM, interest-
ingly the performance of the algorithm dropped significantly.
This appears to be a little counter-intuitive. We verified our ex-
periments on a different architecture with libri-960 again, and
observe the same trends as in Table 1. In a different experiment
not reported in the results for conciseness, we carried out a train-
ing with libri-100, and see trends where TSD and PSD perform
roughly with the same performance. Our observation is that the
discrepancies happen with lower amounts of data such as libri-
100 and AMI-IHM. Theory suggests that PSD should always
be better than TSD since that is what the loss function tries to
minimize, but this is not observed with lower amounts of data.
Our hypothesis here is that with lower amounts of data, even
though the loss we minimize is for maximizing the probability
of all alignments in the lattice, lack of data might be forcing
the network to learn only through fewer paths in the lattice, and
compounding errors while considering multiple paths that the
loss may not have maximized probability over. The clear per-
formance improvements with a larger data size like libri-960
might indicate that with more data, the loss minimization might
be able to maximize probabilities through more paths in the lat-
tice. The validation loss values we observe with libri-960 is
around 0.10 per token while with AMI-IHM and libri-100 they
are around 0.65 and 0.35 respectively, which could be further
indication of our hypothesis. There is no clear winner in terms
of performance here, but what we can infer is that when dealing
with a model trained on sufficient amount of training data, PSD
can achieve much better performance when compared to TSD,
with the right length penalty.

9. Conclusions
In this work, we introduce a new approach for decoding through
the probability lattice of an RNN-T network called prefix-search
decoding. We show that this method is closer to the training ob-
jective than existing decode strategies. The approach requires
no major changes to the existing architecture. We test out this
proposed decoding strategy on the Librispeech corpus and ob-
serve consistent gains in WER with larger splits such as train-
960 having an average relative word error rate gain of 3.5%.
Our experiments reveal that even though PSD should in the-
ory be always better than TSD, for low resource scenarios the
former has degraded performance in comparison. We conclude
that for scenarios where there is an abundance of training data,
PSD could outperform TSD.
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